--- pretty_name: MultiCaRe Cases license: cc-by-4.0 task_categories: - text-classification - text-retrieval language: - en size_categories: - 100K140 classes). - Scale: 85k+ articles with 110k+ patient mentions and 160k+ images (v2.0). - Tasks enabled: narrative classification, retrieval, summarization; multimodal modeling with image joins; VQA/doc-QA with figure references. - Citation: Paper — https://www.mdpi.com/2306-5729/10/8/123; Zenodo — https://zenodo.org/records/13936721. This repository: per-case dataset Per-case clinical narratives and demographics extracted from case reports. Schema - case_id: case identifier (joins to images.patient_id) - article_id: PMCID (joins to articles.article_id) - case_text: clinical case narrative - age: age in years (0 if <1 y.o.) - gender: Female, Male, Transgender, Unknown Quick start ```python from datasets import load_dataset cases = load_dataset("openmed-community/multicare-cases", split="train") print(cases[0]["case_text"][:600]) ``` Join with images ```python from datasets import load_dataset cases = load_dataset("openmed-community/multicare-cases", split="train") imgs = load_dataset("openmed-community/multicare-images", split="train") cid = cases[0]["case_id"] imgs_for_case = imgs.filter(lambda e: e["patient_id"] == cid) imgs_for_case[0]["image"].show() ``` Notes - No official splits; recommend patient/article-level splitting to avoid leakage. - Per-item OA licenses are provided at the image level and via articles.