pauladroghoff commited on
Commit
9a693bf
·
verified ·
1 Parent(s): af38e0a
Files changed (1) hide show
  1. README.md +103 -3
README.md CHANGED
@@ -1,3 +1,103 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: en
4
+ pretty_name: Manipulative Language Detection Dataset
5
+ task_categories:
6
+ - text-classification
7
+ - text-scoring
8
+ tags:
9
+ - manipulative-language
10
+ - nlp
11
+ - binary-classification
12
+ - dialogue
13
+ - transformer
14
+ size_categories:
15
+ - 1K<n<10K
16
+ ---
17
+
18
+ # Manipulative Language Detection Dataset
19
+
20
+ This dataset contains annotated text examples for detecting manipulative language at both sentence and dialogue levels.
21
+
22
+ ## Dataset Description
23
+
24
+ The Manipulative Language Detection Dataset is designed to help train and evaluate transformer-based models in identifying manipulative language patterns. The dataset consists of two complementary components:
25
+
26
+ 1. **Sentence-level data**: Individual sentences labeled as manipulative (1) or non-manipulative (0)
27
+ 2. **Dialogue-level data**: Conversational exchanges with annotations for manipulation techniques, victim vulnerabilities, and context
28
+
29
+ The dataset is sourced from various dialogues, including movie scripts and other conversational contexts. Each entry is thoroughly annotated for manipulation attributes.
30
+
31
+ ## Data Format
32
+
33
+ ### Sentence-Level Data
34
+ Each entry contains:
35
+ - Inner ID
36
+ - Unique ID
37
+ - Sentence text
38
+ - Binary manipulation label (1=manipulative, 0=non-manipulative)
39
+ - Original context (dialogue source)
40
+ - Movie name
41
+ - Annotator agreement metrics
42
+ - Manipulation technique categorization (persuasion, intimidation, seduction, etc.)
43
+ - Victim/vulnerability annotations
44
+ - Confidence scores
45
+
46
+ ### Dialogue-Level Data
47
+ Each entry contains:
48
+ - Inner ID
49
+ - Unique ID
50
+ - Dialogue exchange with speaker identification
51
+ - Manipulation classification (binary)
52
+ - Movie Name
53
+ - Annotator agreement metrics
54
+ - Manipulation technique categorization (persuasion, intimidation, seduction, etc.)
55
+ - Victim/vulnerability annotations
56
+ - Confidence scores
57
+
58
+ ## Manipulation Techniques
59
+
60
+ The dataset identifies several manipulation techniques, including:
61
+ - Persuasion or Seduction
62
+ - Accusation
63
+ - Denial
64
+ - Evasion
65
+ - Feigning Innocence
66
+ - Rationalization
67
+ - Playing the Victim Role
68
+ - Playing the Servant Role
69
+ - Shaming or Belittlement
70
+ - Intimidation
71
+ - Brandishing Anger
72
+
73
+ ## Targeted Vulnerability
74
+
75
+ The dataset identifies several vulnerability targets, including:
76
+ - Over-responsibility
77
+ - Over-intellectualization
78
+ - Naivete
79
+ - Low self-esteem
80
+ - Dependency
81
+
82
+ ## Usage
83
+
84
+ This dataset is designed for training transformer-based models to detect manipulative language. Researchers can use it to:
85
+
86
+ 1. Train binary classifiers at the sentence level and/or dialogue level
87
+ 2. Develop more sophisticated models that identify specific manipulation techniques
88
+ 3. Study the contextual nature of manipulation in dialogues
89
+ 4. Evaluate models' performance across different manipulation strategies
90
+
91
+ ### Loading the Dataset
92
+
93
+ ```python
94
+ from datasets import load_dataset
95
+
96
+ # Load the dataset
97
+ dataset = load_dataset("pauladroghoff/manipulative-language-detection")
98
+
99
+ # Access sentence-level data
100
+ sentence_data = dataset["sentence_level"]
101
+
102
+ # Access dialogue-level data
103
+ dialogue_data = dataset["dialogue_level"]