import requests import pandas as pd from bs4 import BeautifulSoup import concurrent.futures import time from tqdm import tqdm # For progress bar # Load the CSV file containing the URLs input_csv = "acharya_prashant_articles.csv" # Replace with your actual file name output_csv = "Final_articles_content_with_hindi.xlsx" # Name of the output CSV file # Read the input CSV file urls_df = pd.read_csv(input_csv,encoding='utf-8') urls = urls_df['Article URL'].tolist() # Function to process a single URL def fetch_article_data(url): try: response = requests.get(url, timeout=100) response.encoding = 'utf-8' if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') # Extract the title title = soup.find('title').text.strip() # Extract the content content_container = soup.find("div", class_="flex flex-col space-y-4 laptop:space-y-4.5") # print(content_container) content = "" if content_container: nested_divs = content_container.find_all("div", class_="flex flex-col text-justify") for div in nested_divs: content += div.text.strip() + "\n" return {"URL": url, "Title": title, "Content": content.strip()} else: return {"URL": url, "Title": None, "Content": None} except Exception as e: print(f"Error processing URL: {url}, Error: {e}") return {"URL": url, "Title": None, "Content": None} # Parallel processing using ThreadPoolExecutor def process_urls_in_parallel(urls, max_workers=10): results = [] with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: # Use tqdm to display a progress bar for result in tqdm(executor.map(fetch_article_data, urls), total=len(urls)): results.append(result) # Save progress incrementally to avoid losing data if len(results) % 100 == 0: # Save every 100 results temp_df = pd.DataFrame(results) temp_df.to_csv(output_csv, index=False, encoding='utf-8') return results # Start processing start_time = time.time() articles_data = process_urls_in_parallel(urls, max_workers=20) # Adjust max_workers based on your CPU end_time = time.time() # Save final data to CSV articles_df = pd.DataFrame(articles_data) articles_df.to_excel(output_csv, index=False) print(f"Article details saved to '{output_csv}'") print(f"Total time taken: {end_time - start_time:.2f} seconds")