import pandas as pd # from langchain.text_splitter import RecursiveCharacterTextSplitter # No longer needed from tqdm import tqdm # Load the dataset input_xl = "Final_articles_content_with_hindi.xlsx" # Updated to the correct input file name output_csv = "New_chunked_articles.csv" # Read the input CSV file data = pd.read_excel(input_xl) # Prepare a list to store the chunked data chunked_data = [] # Iterate through the rows and split the content into paragraphs for idx, row in tqdm(data.iterrows(), total=len(data)): title = row["Title"] url = row["URL"] content = row["Content"] # Split the content into paragraphs using double newlines as separators paragraphs = content.split('\n\n') # Add each paragraph as a new row in the chunked dataset for i, paragraph in enumerate(paragraphs): if paragraph.strip(): # Only add non-empty paragraphs chunked_data.append({ "URL": url, "Title": title, # Keep the original title as each row represents a part of it "Content Chunk": paragraph.strip() # Store the paragraph content, stripping leading/trailing spaces }) # Convert the chunked data into a DataFrame chunked_df = pd.DataFrame(chunked_data) # Save the chunked data to a new CSV file chunked_df.to_csv(output_csv, index=False, encoding="utf-8") print(f"Chunked data saved to '{output_csv}'")