Datasets:
Tasks:
Audio Classification
Sub-tasks:
keyword-spotting
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| #!/usr/bin/env python | |
| # coding: utf-8 | |
| # # Create embeddings with the transformer library | |
| # | |
| # We use the Huggingface transformers library to create an embedding for a an audio dataset | |
| # | |
| # ## tldr; Play as callable functions | |
| import datasets | |
| from transformers import AutoFeatureExtractor, AutoModel, ASTForAudioClassification | |
| import torch | |
| import pandas as pd | |
| import umap | |
| import numpy as np | |
| _SPLIT = "train" | |
| _MODELNAME = "MIT/ast-finetuned-speech-commands-v2" | |
| def __set_device(): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if device == "cuda": | |
| torch.cuda.empty_cache() | |
| return device | |
| def __permute_model2dataset_probabilities(model_probabilities): | |
| """ | |
| Model and dataset int mapping is different. Therefore, we need to permute the model's | |
| logits to match up to the dataset's order. | |
| Due to small size of vector do this on cpu | |
| """ | |
| cpu_copy = model_probabilities.to("cpu").detach().numpy() | |
| # only select model2dataset_truncated values as they map model ints to existing dataset ints | |
| permuted_vector = np.empty(shape=(len(labels),)) | |
| # Problem: model output has more output classes than dataset | |
| # Hence, only add those outputs that are mapped | |
| for key in model2dataset_truncated: | |
| dataset_int = model2dataset_truncated[key] | |
| permuted_vector[dataset_int] = cpu_copy[key] | |
| return permuted_vector | |
| def batch_probabilities_and_embeddings(model, feature_extractor, classifier): | |
| device = model.device | |
| def processing(batch): | |
| audios = [element["array"] for element in batch["audio"]] | |
| inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True, sampling_rate=16000).to(device) | |
| outputs = model(**inputs) | |
| embeddings = classifier(**inputs).last_hidden_state[:, 0].cpu() | |
| return {"logits":torch.tensor([__permute_model2dataset_probabilities(logit) for logit in outputs.logits]), "embedding": embeddings} | |
| return processing | |
| def annotate_probabilities_and_embeddings(dataset, modelname, batched=True, batch_size= 8): | |
| model = ASTForAudioClassification.from_pretrained(modelname) | |
| feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True) | |
| classifier = AutoModel.from_pretrained(modelname, output_hidden_states=True) | |
| device = __set_device() | |
| calc_outputs = batch_probabilities_and_embeddings(model.to(device), feature_extractor, classifier.to(device)) | |
| output_dataset = dataset.map(calc_outputs, batched = batched, batch_size = batch_size) | |
| return output_dataset | |
| def annotate_batch(model, dataset): | |
| device = model.device | |
| def batch_annotation(batch): | |
| logits = [torch.tensor(element) for element in batch["logits"]] | |
| probabilities_per_class = [torch.nn.functional.softmax(logit, dim=-1) for logit in logits] | |
| predicted_class_ids = [torch.argmax(logit).item() for logit in logits] | |
| # logits are already permuted to match dataset ordering -> no additional work needed | |
| predicted_labels = [labels[predicted_class_id] for predicted_class_id in predicted_class_ids] | |
| annotated_labels = [labels[element] for element in batch["label"]] | |
| probabilities = [] | |
| for index, prob_per_class in enumerate(probabilities_per_class): | |
| probabilities.append(prob_per_class[predicted_class_ids[index]].item()) | |
| return {"label_string": annotated_labels, "probability": probabilities, | |
| "probability_vector": probabilities_per_class, | |
| "prediction": predicted_class_ids, | |
| "prediction_string": predicted_labels} | |
| return batch_annotation | |
| def annotate_dataset(dataset, modelname, batched=True, batch_size=8): | |
| model = ASTForAudioClassification.from_pretrained(modelname) | |
| device = __set_device() | |
| annotate = annotate_batch(model.to(device), dataset) | |
| annotated_dataset = dataset.map(annotate, batched=batched, batch_size=batch_size) | |
| return annotated_dataset | |
| # ## Step-by-step example on speech-commands | |
| # | |
| # ### Load speech-commands from Huggingface hub | |
| # Use validation split to evaluate model's performance on unseen data | |
| dataset = datasets.load_dataset('speech_commands', 'v0.01', split=_SPLIT) | |
| labels = dataset.features["label"].names | |
| # use dict comprehension to build a dict that maps the dataset's string label to the dataset's int label | |
| label_dict = {label: i for label, i in zip(labels, range(len(labels)))} | |
| # {key: value for key, value in zip(keys, values)} | |
| model = ASTForAudioClassification.from_pretrained(_MODELNAME) | |
| # look up label from model int in the label dict and translate that label into the dataset int | |
| model2dataset_int_conversion = {i: label_dict[model.config.id2label[i]] if model.config.id2label[i] in label_dict.keys() | |
| else -1 for i in range(model.config.num_labels)} | |
| model2dataset_truncated = {key:value for key,value in model2dataset_int_conversion.items() if value != -1} | |
| # Let's have a look at all of the labels that we want to predict | |
| print(labels) | |
| # ### Compute probabilities and embeddings and annotate dataset | |
| # calculate logits and embedding for each sample and annotate | |
| dataset_annotated = annotate_probabilities_and_embeddings(dataset, _MODELNAME) | |
| # Now annotate labels and probabilities | |
| dataset_enriched = annotate_dataset(dataset_annotated, _MODELNAME) | |
| # ### Reduce embeddings for faster visualization | |
| embeddings = np.stack(np.array(dataset_enriched['embedding'])) | |
| reducer = umap.UMAP() | |
| reduced_embedding = reducer.fit_transform(embeddings) | |
| dataset_enriched = dataset_enriched.add_column("embedding_reduced", list(reduced_embedding)) | |
| df = dataset_enriched.to_pandas() | |
| df.to_parquet("data/dataset_audio_" + _SPLIT + ".parquet.gzip", compression='gzip') |