Datasets:
Tasks:
Audio Classification
Sub-tasks:
keyword-spotting
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Speech Commands, an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. """ | |
| import textwrap | |
| import datasets | |
| from pathlib import Path | |
| import pandas as pd | |
| _CITATION = """ | |
| @article{speechcommandsv2, | |
| author = { {Warden}, P.}, | |
| title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}", | |
| journal = {ArXiv e-prints}, | |
| archivePrefix = "arXiv", | |
| eprint = {1804.03209}, | |
| primaryClass = "cs.CL", | |
| keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction}, | |
| year = 2018, | |
| month = apr, | |
| url = {https://arxiv.org/abs/1804.03209}, | |
| } | |
| """ | |
| _DESCRIPTION = """ | |
| This is a set of one-second .wav audio files, each containing a single spoken | |
| English word or background noise. These words are from a small set of commands, and are spoken by a | |
| variety of different speakers. This data set is designed to help train simple | |
| machine learning models. This dataset is covered in more detail at | |
| [https://arxiv.org/abs/1804.03209](https://arxiv.org/abs/1804.03209). | |
| Version 0.01 of the data set (configuration `"v0.01"`) was released on August 3rd 2017 and contains | |
| 64,727 audio files. | |
| In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left", | |
| "Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", | |
| "Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow". | |
| In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual". | |
| In both versions, ten of them are used as commands by convention: "Yes", "No", "Up", "Down", "Left", | |
| "Right", "On", "Off", "Stop", "Go". Other words are considered to be auxiliary (in current implementation | |
| it is marked by `True` value of `"is_unknown"` feature). Their function is to teach a model to distinguish core words | |
| from unrecognized ones. | |
| This version is not yet supported. | |
| The `_silence_` class contains a set of longer audio clips that are either recordings or | |
| a mathematical simulation of noise. | |
| """ | |
| _LICENSE = "Creative Commons BY 4.0 License" | |
| _URL = "https://www.tensorflow.org/datasets/catalog/speech_commands" | |
| _DL_URL = "https://s3.amazonaws.com/datasets.huggingface.co/SpeechCommands/{name}/{name}_{split}.tar.gz" | |
| WORDS = [ | |
| "yes", | |
| "no", | |
| "up", | |
| "down", | |
| "left", | |
| "right", | |
| "on", | |
| "off", | |
| "stop", | |
| "go", | |
| ] | |
| UNKNOWN_WORDS_V1 = [ | |
| "zero", | |
| "one", | |
| "two", | |
| "three", | |
| "four", | |
| "five", | |
| "six", | |
| "seven", | |
| "eight", | |
| "nine", | |
| "bed", | |
| "bird", | |
| "cat", | |
| "dog", | |
| "happy", | |
| "house", | |
| "marvin", | |
| "sheila", | |
| "tree", | |
| "wow", | |
| ] | |
| UNKNOWN_WORDS_V2 = UNKNOWN_WORDS_V1 + [ | |
| "backward", | |
| "forward", | |
| "follow", | |
| "learn", | |
| "visual", | |
| ] | |
| SILENCE = "_silence_" # background noise | |
| LABELS_V1 = WORDS + UNKNOWN_WORDS_V1 + [SILENCE] | |
| LABELS_V2 = WORDS + UNKNOWN_WORDS_V2 + [SILENCE] | |
| class SpeechCommandsConfig(datasets.BuilderConfig): | |
| """BuilderConfig for SpeechCommands.""" | |
| def __init__(self, labels, **kwargs): | |
| super(SpeechCommandsConfig, self).__init__(**kwargs) | |
| self.labels = labels | |
| class SpeechCommands(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| SpeechCommandsConfig( | |
| name="v0.01", | |
| description=textwrap.dedent( | |
| """\ | |
| Version 0.01 of the SpeechCommands dataset. Contains 30 words | |
| (20 of them are auxiliary) and background noise. | |
| """ | |
| ), | |
| labels=LABELS_V1, | |
| version=datasets.Version("0.1.0"), | |
| ), | |
| #SpeechCommandsConfig( | |
| # name="v0.02", | |
| # description=textwrap.dedent( | |
| # """\ | |
| # Version 0.02 of the SpeechCommands dataset. | |
| # Contains 35 words (25 of them are auxiliary) and background noise. | |
| # """ | |
| # ), | |
| # labels=LABELS_V2, | |
| # version=datasets.Version("0.2.0"), | |
| #), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "audio": datasets.Value("string"), | |
| "full_audio": datasets.features.Audio(sampling_rate=16_000), | |
| "label": datasets.ClassLabel(names=self.config.labels), | |
| "is_unknown": datasets.Value("bool"), | |
| "speaker_id": datasets.Value("string"), | |
| "utterance_id": datasets.Value("int8"), | |
| #enriched features: | |
| "label_string": datasets.Value("string"), | |
| "probability": datasets.Value("float64"), | |
| "probability_vector": datasets.Sequence(feature=datasets.Value("float64"), length=31), | |
| "prediction": datasets.ClassLabel(names=self.config.labels), | |
| "prediction_string":datasets.Value("string"), | |
| "embedding_reduced": datasets.Sequence(feature=datasets.Value("float32"), length=2), | |
| } | |
| ), | |
| homepage=_URL, | |
| citation=_CITATION, | |
| license=_LICENSE, | |
| version=self.config.version, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| archive_paths = dl_manager.download( | |
| { | |
| "train": _DL_URL.format(name=self.config.name, split="train"), | |
| "validation": _DL_URL.format(name=self.config.name, split="validation"), | |
| "test": _DL_URL.format(name=self.config.name, split="test"), | |
| } | |
| ) | |
| metadata_paths = dl_manager.download( | |
| { | |
| "train": "data/dataset_audio_train_clipped.parquet.gzip", | |
| "test": "data/dataset_audio_test_clipped.parquet.gzip", | |
| "validation": "data/dataset_audio_validation_clipped.parquet.gzip" | |
| } | |
| ) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "archive_path": dl_manager.download_and_extract(archive_paths["train"]), | |
| "metadata": pd.read_parquet(metadata_paths["train"]), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "archive_path": dl_manager.download_and_extract(archive_paths["validation"]), | |
| "metadata": pd.read_parquet(metadata_paths["validation"]), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "archive_path": dl_manager.download_and_extract(archive_paths["test"]), | |
| "metadata": pd.read_parquet(metadata_paths["test"]), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, archive_path, metadata): | |
| # HINT: metadata should already be the split-specific metadata | |
| pathlist = Path(archive_path).glob('**/*.wav') | |
| # align metadata and data | |
| pathlist= sorted(pathlist) | |
| for path, row in zip(pathlist, metadata.iterrows()): | |
| # row is a tuple containg an index and a pandas series | |
| pathcomponents = str(path).split("/") | |
| word = pathcomponents[-2] | |
| audio_filename = pathcomponents[-1] | |
| simple_path = word + '/' + audio_filename | |
| is_unknown = False | |
| if word == SILENCE: | |
| speaker_id, utterance_id = None, 0 | |
| else: # word is either in WORDS or unknown | |
| if word not in WORDS: | |
| is_unknown = True | |
| # an audio filename looks like `0bac8a71_nohash_0.wav` | |
| speaker_id, _, utterance_id = audio_filename.split(".wav")[0].split("_") | |
| yield simple_path, { | |
| "audio": str(path), | |
| "full_audio": {"path": str(path), "bytes": None}, | |
| "label": word, | |
| "is_unknown": is_unknown, | |
| "speaker_id": speaker_id, | |
| "utterance_id": utterance_id, | |
| #enriched features: | |
| "label_string": row[1]["label_string"], | |
| "probability": row[1]["probability"], | |
| "probability_vector": row[1]["probability_vector"], | |
| "prediction": row[1]["prediction"], | |
| "prediction_string": row[1]["prediction_string"], | |
| "embedding_reduced": row[1]["embedding_reduced"] | |
| } | |
| #for debugging, comment out after | |
| #if __name__ == "__main__": | |
| #ds = datasets.load_dataset("speech_commands_enriched.py", 'v0.01', split="test", | |
| #streaming=False) | |