Datasets:
Tasks:
Audio Classification
Sub-tasks:
keyword-spotting
Languages:
English
Size:
10K - 100K
ArXiv:
License:
soeren
commited on
Commit
·
fb12e65
1
Parent(s):
22fa011
build script
Browse files- .gitattributes +1 -0
- .gitignore +7 -0
- data/clip_metadata.py +10 -0
- data/create_enriched_annotated_speechcommands.py +174 -0
- data/dataset_audio_test_clipped.parquet.gzip +3 -0
- data/dataset_audio_train_clipped.parquet.gzip +3 -0
- data/dataset_audio_validation_clipped.parquet.gzip +3 -0
- speech_commands_enriched.py +46 -17
.gitattributes
CHANGED
|
@@ -52,3 +52,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
*.parquet.gzip filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Pipfile
|
| 2 |
+
Pipfile.lock
|
| 3 |
+
|
| 4 |
+
data/dataset_audio_annotated_and_embedding_with_probs.parquet.gzip
|
| 5 |
+
data/dataset_audio_test.parquet.gzip
|
| 6 |
+
data/dataset_audio_train.parquet.gzip
|
| 7 |
+
data/dataset_audio_validation.parquet.gzip
|
data/clip_metadata.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
_SPLIT = "validation"
|
| 4 |
+
|
| 5 |
+
df = pd.read_parquet("data/dataset_audio_" + _SPLIT +".parquet.gzip")
|
| 6 |
+
|
| 7 |
+
clipped_df = df.filter(["Probability", "Predicted Label", "Annotated Labels", "Probability Vector", "embedding_reduced"],
|
| 8 |
+
axis=1)
|
| 9 |
+
|
| 10 |
+
clipped_df.to_parquet("data/dataset_audio_" + _SPLIT +"_clipped.parquet.gzip")
|
data/create_enriched_annotated_speechcommands.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# # Create embeddings with the transformer library
|
| 5 |
+
#
|
| 6 |
+
# We use the Huggingface transformers library to create an embedding for a an audio dataset
|
| 7 |
+
#
|
| 8 |
+
#
|
| 9 |
+
#
|
| 10 |
+
|
| 11 |
+
# ## tldr; Play as callable functions
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
import datasets
|
| 16 |
+
from transformers import AutoFeatureExtractor, AutoModel, ASTForAudioClassification
|
| 17 |
+
import torch
|
| 18 |
+
from renumics import spotlight
|
| 19 |
+
import pandas as pd
|
| 20 |
+
import umap
|
| 21 |
+
import numpy as np
|
| 22 |
+
|
| 23 |
+
_SPLIT = "train"
|
| 24 |
+
|
| 25 |
+
def __set_device():
|
| 26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
if device == "cuda":
|
| 28 |
+
torch.cuda.empty_cache()
|
| 29 |
+
return device
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def extract_embeddings(model, feature_extractor):
|
| 33 |
+
"""Utility to compute embeddings."""
|
| 34 |
+
device = model.device
|
| 35 |
+
|
| 36 |
+
def pp(batch):
|
| 37 |
+
audios = [element["array"] for element in batch["audio"]]
|
| 38 |
+
inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True).to(device)
|
| 39 |
+
embeddings = model(**inputs).last_hidden_state[:, 0].cpu()
|
| 40 |
+
|
| 41 |
+
return {"embedding": embeddings}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
return pp
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def huggingface_embedding(dataset, modelname, batched=True, batch_size=8):
|
| 48 |
+
# initialize huggingface model
|
| 49 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True)
|
| 50 |
+
model = AutoModel.from_pretrained(modelname, output_hidden_states=True)
|
| 51 |
+
|
| 52 |
+
#compute embedding
|
| 53 |
+
device = __set_device()
|
| 54 |
+
extract_fn = extract_embeddings(model.to(device), feature_extractor)
|
| 55 |
+
updated_dataset = dataset.map(extract_fn, batched=batched, batch_size=batch_size)
|
| 56 |
+
|
| 57 |
+
return updated_dataset
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def batch_probabilities(model, feature_extractor):
|
| 65 |
+
device = model.device
|
| 66 |
+
|
| 67 |
+
def processing(batch):
|
| 68 |
+
audios = [element["array"] for element in batch["audio"]]
|
| 69 |
+
inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True, sampling_rate=16000).to(device)
|
| 70 |
+
outputs = model(**inputs)
|
| 71 |
+
return {"logits": outputs.logits}
|
| 72 |
+
return processing
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def annotate_probabilities(dataset, modelname, batched=True, batch_size= 8):
|
| 76 |
+
model = ASTForAudioClassification.from_pretrained(modelname)
|
| 77 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True)
|
| 78 |
+
|
| 79 |
+
device = __set_device()
|
| 80 |
+
calc_outputs = batch_probabilities (model.to(device), feature_extractor)
|
| 81 |
+
output_dataset = dataset.map(calc_outputs, batched = batched, batch_size = batch_size)
|
| 82 |
+
|
| 83 |
+
return output_dataset
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def annotate_batch(model, dataset):
|
| 91 |
+
device = model.device
|
| 92 |
+
|
| 93 |
+
def batch_annotation(batch):
|
| 94 |
+
logits = [torch.tensor(element) for element in batch["logits"]]
|
| 95 |
+
probabilities_per_class = [torch.nn.functional.softmax(logit, dim=-1) for logit in logits]
|
| 96 |
+
predicted_class_ids = [torch.argmax(logit).item() for logit in logits]
|
| 97 |
+
predicted_labels = [model.config.id2label[predicted_class_id] for predicted_class_id in predicted_class_ids]
|
| 98 |
+
# pre-trained model to different amount of classes
|
| 99 |
+
# -> id2label only reflects "internal label", not actual dataset label
|
| 100 |
+
annotated_labels = [labels[element] for element in batch["label"]]
|
| 101 |
+
probabilities = []
|
| 102 |
+
for index, prob_per_class in enumerate(probabilities_per_class):
|
| 103 |
+
probabilities.append(prob_per_class[predicted_class_ids[index]].item())
|
| 104 |
+
return {"Probability": probabilities, "Predicted Label": predicted_labels,
|
| 105 |
+
"Annotated Labels": annotated_labels, "Probability Vector": probabilities_per_class}
|
| 106 |
+
|
| 107 |
+
return batch_annotation
|
| 108 |
+
|
| 109 |
+
def annotate_dataset(dataset, modelname, batched=True, batch_size=8):
|
| 110 |
+
model = ASTForAudioClassification.from_pretrained(modelname)
|
| 111 |
+
device = __set_device()
|
| 112 |
+
|
| 113 |
+
annotate = annotate_batch(model.to(device), dataset)
|
| 114 |
+
annotated_dataset = dataset.map(annotate, batched=batched, batch_size=batch_size)
|
| 115 |
+
|
| 116 |
+
return annotated_dataset
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# ## Step-by-step example on speech-commands
|
| 123 |
+
#
|
| 124 |
+
# ### Load speech-commands from Huggingface hub
|
| 125 |
+
|
| 126 |
+
# Use validation split to evaluate model's performance on unseen data
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
dataset = datasets.load_dataset('speech_commands', 'v0.01', split=_SPLIT)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
labels = dataset.features["label"].names
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# Let's have a look at all of the labels that we want to predict
|
| 137 |
+
|
| 138 |
+
print(labels)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# ### Compute probabilities and annotate dataset
|
| 142 |
+
|
| 143 |
+
# First, calculate logits per sample
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# calculate logits for each sample and annotate
|
| 147 |
+
dataset_annotated = annotate_probabilities(dataset, "MIT/ast-finetuned-speech-commands-v2")
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# Now annotate labels and probabilities
|
| 151 |
+
|
| 152 |
+
dataset_annotated_complete = annotate_dataset(dataset_annotated, "MIT/ast-finetuned-speech-commands-v2")
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# ### Compute embedding with vision transformer from Huggingface
|
| 156 |
+
|
| 157 |
+
dataset_enriched = huggingface_embedding(dataset_annotated_complete, "MIT/ast-finetuned-speech-commands-v2")
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# ### Reduce embeddings for faster visualization
|
| 161 |
+
|
| 162 |
+
embeddings = np.stack(np.array(dataset_enriched['embedding']))
|
| 163 |
+
reducer = umap.UMAP()
|
| 164 |
+
reduced_embedding = reducer.fit_transform(embeddings)
|
| 165 |
+
dataset_enriched = dataset_enriched.add_column("embedding_reduced", list(reduced_embedding))
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
print(dataset_enriched.features)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
df = dataset_enriched.to_pandas()
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
df.to_parquet("data/dataset_audio_" + _SPLIT + ".parquet.gzip", compression='gzip')
|
data/dataset_audio_test_clipped.parquet.gzip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8b6ae3710263e5e83c9f6784e1945b15a97bde88a6b7d1b45587b0d6278345c
|
| 3 |
+
size 698777
|
data/dataset_audio_train_clipped.parquet.gzip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8e208d54feef82c4a7e1f120787e4b1074cf7cad75035e3640714636965e84f
|
| 3 |
+
size 8525172
|
data/dataset_audio_validation_clipped.parquet.gzip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:390eaf7ec5fdc8a832651b6255948aeba7291ae1b2afc5de73229aa25c48a73c
|
| 3 |
+
size 1566541
|
speech_commands_enriched.py
CHANGED
|
@@ -22,6 +22,7 @@ import datasets
|
|
| 22 |
|
| 23 |
from pathlib import Path
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
_CITATION = """
|
| 27 |
@article{speechcommandsv2,
|
|
@@ -51,6 +52,7 @@ Version 0.01 of the data set (configuration `"v0.01"`) was released on August 3r
|
|
| 51 |
In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
|
| 52 |
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
|
| 53 |
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".
|
|
@@ -130,17 +132,17 @@ class SpeechCommandsConfig(datasets.BuilderConfig):
|
|
| 130 |
|
| 131 |
class SpeechCommands(datasets.GeneratorBasedBuilder):
|
| 132 |
BUILDER_CONFIGS = [
|
| 133 |
-
SpeechCommandsConfig(
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
),
|
| 144 |
SpeechCommandsConfig(
|
| 145 |
name="v0.02",
|
| 146 |
description=textwrap.dedent(
|
|
@@ -165,6 +167,12 @@ class SpeechCommands(datasets.GeneratorBasedBuilder):
|
|
| 165 |
"is_unknown": datasets.Value("bool"),
|
| 166 |
"speaker_id": datasets.Value("string"),
|
| 167 |
"utterance_id": datasets.Value("int8"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
}
|
| 169 |
),
|
| 170 |
homepage=_URL,
|
|
@@ -182,35 +190,48 @@ class SpeechCommands(datasets.GeneratorBasedBuilder):
|
|
| 182 |
"test": _DL_URL.format(name=self.config.name, split="test"),
|
| 183 |
}
|
| 184 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
return [
|
| 187 |
datasets.SplitGenerator(
|
| 188 |
name=datasets.Split.TRAIN,
|
| 189 |
gen_kwargs={
|
| 190 |
"archive_path": dl_manager.download_and_extract(archive_paths["train"]),
|
|
|
|
| 191 |
},
|
| 192 |
),
|
| 193 |
datasets.SplitGenerator(
|
| 194 |
name=datasets.Split.VALIDATION,
|
| 195 |
gen_kwargs={
|
| 196 |
"archive_path": dl_manager.download_and_extract(archive_paths["validation"]),
|
|
|
|
| 197 |
},
|
| 198 |
),
|
| 199 |
datasets.SplitGenerator(
|
| 200 |
name=datasets.Split.TEST,
|
| 201 |
gen_kwargs={
|
| 202 |
"archive_path": dl_manager.download_and_extract(archive_paths["test"]),
|
|
|
|
| 203 |
},
|
| 204 |
),
|
| 205 |
]
|
| 206 |
|
| 207 |
-
def _generate_examples(self, archive_path):
|
| 208 |
|
| 209 |
-
|
| 210 |
|
| 211 |
pathlist = Path(archive_path).glob('**/*.wav')
|
| 212 |
|
| 213 |
-
for path in pathlist:
|
|
|
|
|
|
|
| 214 |
|
| 215 |
pathcomponents = str(path).split("/")
|
| 216 |
word = pathcomponents[-2]
|
|
@@ -236,8 +257,16 @@ class SpeechCommands(datasets.GeneratorBasedBuilder):
|
|
| 236 |
"is_unknown": is_unknown,
|
| 237 |
"speaker_id": speaker_id,
|
| 238 |
"utterance_id": utterance_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
}
|
| 240 |
|
| 241 |
-
#for debugging
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
from pathlib import Path
|
| 24 |
|
| 25 |
+
import pandas as pd
|
| 26 |
|
| 27 |
_CITATION = """
|
| 28 |
@article{speechcommandsv2,
|
|
|
|
| 52 |
In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
|
| 53 |
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
|
| 54 |
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".
|
| 55 |
+
This version is not yet supported.
|
| 56 |
|
| 57 |
|
| 58 |
In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".
|
|
|
|
| 132 |
|
| 133 |
class SpeechCommands(datasets.GeneratorBasedBuilder):
|
| 134 |
BUILDER_CONFIGS = [
|
| 135 |
+
#SpeechCommandsConfig(
|
| 136 |
+
# name="v0.01",
|
| 137 |
+
# description=textwrap.dedent(
|
| 138 |
+
# """\
|
| 139 |
+
# Version 0.01 of the SpeechCommands dataset. Contains 30 words
|
| 140 |
+
# (20 of them are auxiliary) and background noise.
|
| 141 |
+
# """
|
| 142 |
+
# ),
|
| 143 |
+
# labels=LABELS_V1,
|
| 144 |
+
# version=datasets.Version("0.1.0"),
|
| 145 |
+
#),
|
| 146 |
SpeechCommandsConfig(
|
| 147 |
name="v0.02",
|
| 148 |
description=textwrap.dedent(
|
|
|
|
| 167 |
"is_unknown": datasets.Value("bool"),
|
| 168 |
"speaker_id": datasets.Value("string"),
|
| 169 |
"utterance_id": datasets.Value("int8"),
|
| 170 |
+
#enriched features:
|
| 171 |
+
"Probability": datasets.Value("float64"),
|
| 172 |
+
"Predicted Label": datasets.Value("string"),
|
| 173 |
+
"Annotated Labels": datasets.Value("string"),
|
| 174 |
+
"Probability Vector": datasets.Sequence(feature=datasets.Value("float64"), length=35),
|
| 175 |
+
"embedding_reduced": datasets.Sequence(feature=datasets.Value("float32"), length=2),
|
| 176 |
}
|
| 177 |
),
|
| 178 |
homepage=_URL,
|
|
|
|
| 190 |
"test": _DL_URL.format(name=self.config.name, split="test"),
|
| 191 |
}
|
| 192 |
)
|
| 193 |
+
|
| 194 |
+
metadata_paths = dl_manager.download(
|
| 195 |
+
{
|
| 196 |
+
"train": "data/dataset_audio_train_clipped.parquet.gzip",
|
| 197 |
+
"test": "data/dataset_audio_test_clipped.parquet.gzip",
|
| 198 |
+
"validation": "data/dataset_audio_validation_clipped.parquet.gzip"
|
| 199 |
+
}
|
| 200 |
+
)
|
| 201 |
|
| 202 |
return [
|
| 203 |
datasets.SplitGenerator(
|
| 204 |
name=datasets.Split.TRAIN,
|
| 205 |
gen_kwargs={
|
| 206 |
"archive_path": dl_manager.download_and_extract(archive_paths["train"]),
|
| 207 |
+
"metadata": pd.read_parquet(metadata_paths["train"]),
|
| 208 |
},
|
| 209 |
),
|
| 210 |
datasets.SplitGenerator(
|
| 211 |
name=datasets.Split.VALIDATION,
|
| 212 |
gen_kwargs={
|
| 213 |
"archive_path": dl_manager.download_and_extract(archive_paths["validation"]),
|
| 214 |
+
"metadata": pd.read_parquet(metadata_paths["validation"]),
|
| 215 |
},
|
| 216 |
),
|
| 217 |
datasets.SplitGenerator(
|
| 218 |
name=datasets.Split.TEST,
|
| 219 |
gen_kwargs={
|
| 220 |
"archive_path": dl_manager.download_and_extract(archive_paths["test"]),
|
| 221 |
+
"metadata": pd.read_parquet(metadata_paths["test"]),
|
| 222 |
},
|
| 223 |
),
|
| 224 |
]
|
| 225 |
|
| 226 |
+
def _generate_examples(self, archive_path, metadata):
|
| 227 |
|
| 228 |
+
# HINT: metadata should already be the split-specific metadata
|
| 229 |
|
| 230 |
pathlist = Path(archive_path).glob('**/*.wav')
|
| 231 |
|
| 232 |
+
for path, row in zip(pathlist, metadata.iterrows()):
|
| 233 |
+
|
| 234 |
+
# row is a tuple containg an index and a pandas series
|
| 235 |
|
| 236 |
pathcomponents = str(path).split("/")
|
| 237 |
word = pathcomponents[-2]
|
|
|
|
| 257 |
"is_unknown": is_unknown,
|
| 258 |
"speaker_id": speaker_id,
|
| 259 |
"utterance_id": utterance_id,
|
| 260 |
+
#enriched features:
|
| 261 |
+
"Probability": row[1]["Probability"],
|
| 262 |
+
"Predicted Label": row[1]["Predicted Label"],
|
| 263 |
+
"Annotated Labels": row[1]["Annotated Labels"],
|
| 264 |
+
"Probability Vector": row[1]["Probability Vector"],
|
| 265 |
+
"embedding_reduced": row[1]["embedding_reduced"]
|
| 266 |
}
|
| 267 |
|
| 268 |
+
#for debugging, comment out after
|
| 269 |
+
if __name__ == "__main__":
|
| 270 |
+
datasets.builder.has_sufficient_disk_space = lambda needed_bytes, directory='.': True
|
| 271 |
+
ds = datasets.load_dataset("speech_commands_enriched.py", 'v0.02', split="train",
|
| 272 |
+
streaming=False)
|