diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-4-world-7b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..c19565f3e60f01dee233578d9e13e819828a4661 --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json @@ -0,0 +1,70 @@ +{ + "results": { + "arc_challenge": { + "acc,none": 0.3378839590443686, + "acc_stderr,none": 0.01382204792228351, + "acc_norm,none": 0.386518771331058, + "acc_norm_stderr,none": 0.014230084761910471, + "alias": "arc_challenge" + } + }, + "configs": { + "arc_challenge": { + "task": "arc_challenge", + "group": [ + "ai2_arc" + ], + "dataset_path": "allenai/ai2_arc", + "dataset_name": "ARC-Challenge", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "Question: {{question}}\nAnswer:", + "doc_to_target": "{{choices.label.index(answerKey)}}", + "doc_to_choice": "{{choices.text}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 25, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "acc_norm", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "Question: {{question}}\nAnswer:", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "arc_challenge": 1.0 + }, + "n-shot": { + "arc_challenge": 25 + }, + "config": { + "model": "hf", + "model_args": "pretrained=RWKV/rwkv-4-world-7b,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 16 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "21ea2be" +} \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-4-world-7b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..aaced3af344e5acbe091bfe34620b820ad56ac7d --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:aaed50ae41a6e15998e6e818b5c755861c89647c8f79d02b52c475106d49a3e4 +size 17052 diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-4-world-7b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..bead91c2a31f015681cc5d8ee04a675de5e158c4 --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json @@ -0,0 +1,88 @@ +{ + "results": { + "gsm8k": { + "exact_match,get-answer": 0.0, + "exact_match_stderr,get-answer": 0.0, + "alias": "gsm8k" + } + }, + "configs": { + "gsm8k": { + "task": "gsm8k", + "group": [ + "math_word_problems" + ], + "dataset_path": "gsm8k", + "dataset_name": "main", + "training_split": "train", + "test_split": "test", + "fewshot_split": "train", + "doc_to_text": "Question: {{question}}\nAnswer:", + "doc_to_target": "{{answer}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 5, + "metric_list": [ + { + "metric": "exact_match", + "aggregation": "mean", + "higher_is_better": true, + "ignore_case": true, + "ignore_punctuation": false, + "regexes_to_ignore": [ + ",", + "\\$", + "(?s).*#### " + ] + } + ], + "output_type": "generate_until", + "generation_kwargs": { + "until": [ + "\n\n", + "Question:" + ], + "do_sample": false, + "temperature": 0.0 + }, + "repeats": 1, + "filter_list": [ + { + "name": "get-answer", + "filter": [ + { + "function": "regex", + "regex_pattern": "#### (\\-?[0-9\\.\\,]+)" + }, + { + "function": "take_first" + } + ] + } + ], + "should_decontaminate": false, + "metadata": { + "version": 2.0 + } + } + }, + "versions": { + "gsm8k": 2.0 + }, + "n-shot": { + "gsm8k": 5 + }, + "config": { + "model": "hf", + "model_args": "pretrained=RWKV/rwkv-4-world-7b,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-4-world-7b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..812671b8b7efca575c3a1f87ac7ae9c1a415c141 --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f8c31f6a4c1c9de62754e7d2bfca17043c5b87ff489548afa98ba780edb22a75 +size 15007 diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-4-world-7b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..236cd24615d103376a6c5ead1d2ac77f3e966bfc --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json @@ -0,0 +1,68 @@ +{ + "results": { + "hellaswag": { + "acc,none": 0.4838677554272057, + "acc_stderr,none": 0.004987183560792756, + "acc_norm,none": 0.6559450308703445, + "acc_norm_stderr,none": 0.004740882120999972, + "alias": "hellaswag" + } + }, + "configs": { + "hellaswag": { + "task": "hellaswag", + "group": [ + "multiple_choice" + ], + "dataset_path": "hellaswag", + "training_split": "train", + "validation_split": "validation", + "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n", + "doc_to_text": "{{query}}", + "doc_to_target": "{{label}}", + "doc_to_choice": "choices", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 10, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "acc_norm", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "hellaswag": 1.0 + }, + "n-shot": { + "hellaswag": 10 + }, + "config": { + "model": "hf", + "model_args": "pretrained=RWKV/rwkv-4-world-7b,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 16 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "21ea2be" +} \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-4-world-7b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..27327079f751d006d8c6e6dcadb09db71c43eecc --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ca0f7e7459df73214891ea37710bfb1526293d80d232fe8a28991d52e7d7624 +size 40491 diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-4-world-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..24c26853f6dc1c50839c49ddf6e252e42954fdfb --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json @@ -0,0 +1,2651 @@ +{ + "results": { + "mmlu": { + "acc,none": 0.2594359777809429, + "acc_stderr,none": 0.038721756918878456, + "alias": "mmlu" + }, + "mmlu_humanities": { + "alias": " - humanities", + "acc,none": 0.24867162592986186, + "acc_stderr,none": 0.03395931821381665 + }, + "mmlu_formal_logic": { + "alias": " - formal_logic", + "acc,none": 0.3412698412698413, + "acc_stderr,none": 0.042407993275749234 + }, + "mmlu_high_school_european_history": { + "alias": " - high_school_european_history", + "acc,none": 0.296969696969697, + "acc_stderr,none": 0.03567969772268048 + }, + "mmlu_high_school_us_history": { + "alias": " - high_school_us_history", + "acc,none": 0.25, + "acc_stderr,none": 0.03039153369274154 + }, + "mmlu_high_school_world_history": { + "alias": " - high_school_world_history", + "acc,none": 0.22362869198312235, + "acc_stderr,none": 0.027123298205229972 + }, + "mmlu_international_law": { + "alias": " - international_law", + "acc,none": 0.15702479338842976, + "acc_stderr,none": 0.03321244842547129 + }, + "mmlu_jurisprudence": { + "alias": " - jurisprudence", + "acc,none": 0.18518518518518517, + "acc_stderr,none": 0.03755265865037182 + }, + "mmlu_logical_fallacies": { + "alias": " - logical_fallacies", + "acc,none": 0.2331288343558282, + "acc_stderr,none": 0.033220157957767414 + }, + "mmlu_moral_disputes": { + "alias": " - moral_disputes", + "acc,none": 0.2514450867052023, + "acc_stderr,none": 0.023357365785874037 + }, + "mmlu_moral_scenarios": { + "alias": " - moral_scenarios", + "acc,none": 0.2424581005586592, + "acc_stderr,none": 0.014333522059217887 + }, + "mmlu_philosophy": { + "alias": " - philosophy", + "acc,none": 0.2797427652733119, + "acc_stderr,none": 0.025494259350694902 + }, + "mmlu_prehistory": { + "alias": " - prehistory", + "acc,none": 0.26851851851851855, + "acc_stderr,none": 0.02465968518596729 + }, + "mmlu_professional_law": { + "alias": " - professional_law", + "acc,none": 0.24641460234680573, + "acc_stderr,none": 0.011005971399927227 + }, + "mmlu_world_religions": { + "alias": " - world_religions", + "acc,none": 0.23976608187134502, + "acc_stderr,none": 0.032744852119469564 + }, + "mmlu_other": { + "alias": " - other", + "acc,none": 0.26649501126488573, + "acc_stderr,none": 0.035952550294869795 + }, + "mmlu_business_ethics": { + "alias": " - business_ethics", + "acc,none": 0.26, + "acc_stderr,none": 0.0440844002276808 + }, + "mmlu_clinical_knowledge": { + "alias": " - clinical_knowledge", + "acc,none": 0.30943396226415093, + "acc_stderr,none": 0.028450154794118627 + }, + "mmlu_college_medicine": { + "alias": " - college_medicine", + "acc,none": 0.2658959537572254, + "acc_stderr,none": 0.0336876293225943 + }, + "mmlu_global_facts": { + "alias": " - global_facts", + "acc,none": 0.32, + "acc_stderr,none": 0.046882617226215034 + }, + "mmlu_human_aging": { + "alias": " - human_aging", + "acc,none": 0.2645739910313901, + "acc_stderr,none": 0.029605103217038325 + }, + "mmlu_management": { + "alias": " - management", + "acc,none": 0.2912621359223301, + "acc_stderr,none": 0.04498676320572922 + }, + "mmlu_marketing": { + "alias": " - marketing", + "acc,none": 0.2777777777777778, + "acc_stderr,none": 0.02934311479809448 + }, + "mmlu_medical_genetics": { + "alias": " - medical_genetics", + "acc,none": 0.28, + "acc_stderr,none": 0.045126085985421276 + }, + "mmlu_miscellaneous": { + "alias": " - miscellaneous", + "acc,none": 0.26053639846743293, + "acc_stderr,none": 0.015696008563807106 + }, + "mmlu_nutrition": { + "alias": " - nutrition", + "acc,none": 0.2973856209150327, + "acc_stderr,none": 0.026173908506718576 + }, + "mmlu_professional_accounting": { + "alias": " - professional_accounting", + "acc,none": 0.25886524822695034, + "acc_stderr,none": 0.026129572527180848 + }, + "mmlu_professional_medicine": { + "alias": " - professional_medicine", + "acc,none": 0.1875, + "acc_stderr,none": 0.023709788253811766 + }, + "mmlu_virology": { + "alias": " - virology", + "acc,none": 0.2469879518072289, + "acc_stderr,none": 0.03357351982064536 + }, + "mmlu_social_sciences": { + "alias": " - social_sciences", + "acc,none": 0.26649333766655836, + "acc_stderr,none": 0.03568643747433773 + }, + "mmlu_econometrics": { + "alias": " - econometrics", + "acc,none": 0.2894736842105263, + "acc_stderr,none": 0.04266339443159394 + }, + "mmlu_high_school_geography": { + "alias": " - high_school_geography", + "acc,none": 0.3181818181818182, + "acc_stderr,none": 0.03318477333845331 + }, + "mmlu_high_school_government_and_politics": { + "alias": " - high_school_government_and_politics", + "acc,none": 0.24870466321243523, + "acc_stderr,none": 0.031195840877700293 + }, + "mmlu_high_school_macroeconomics": { + "alias": " - high_school_macroeconomics", + "acc,none": 0.23076923076923078, + "acc_stderr,none": 0.021362027725222724 + }, + "mmlu_high_school_microeconomics": { + "alias": " - high_school_microeconomics", + "acc,none": 0.24789915966386555, + "acc_stderr,none": 0.028047967224176892 + }, + "mmlu_high_school_psychology": { + "alias": " - high_school_psychology", + "acc,none": 0.26055045871559634, + "acc_stderr,none": 0.018819182034850068 + }, + "mmlu_human_sexuality": { + "alias": " - human_sexuality", + "acc,none": 0.25190839694656486, + "acc_stderr,none": 0.038073871163060866 + }, + "mmlu_professional_psychology": { + "alias": " - professional_psychology", + "acc,none": 0.26633986928104575, + "acc_stderr,none": 0.0178831881346672 + }, + "mmlu_public_relations": { + "alias": " - public_relations", + "acc,none": 0.33636363636363636, + "acc_stderr,none": 0.04525393596302505 + }, + "mmlu_security_studies": { + "alias": " - security_studies", + "acc,none": 0.2897959183673469, + "acc_stderr,none": 0.02904308868330434 + }, + "mmlu_sociology": { + "alias": " - sociology", + "acc,none": 0.25870646766169153, + "acc_stderr,none": 0.030965903123573026 + }, + "mmlu_us_foreign_policy": { + "alias": " - us_foreign_policy", + "acc,none": 0.29, + "acc_stderr,none": 0.045604802157206845 + }, + "mmlu_stem": { + "alias": " - stem", + "acc,none": 0.26165556612749763, + "acc_stderr,none": 0.04824334124808149 + }, + "mmlu_abstract_algebra": { + "alias": " - abstract_algebra", + "acc,none": 0.26, + "acc_stderr,none": 0.0440844002276808 + }, + "mmlu_anatomy": { + "alias": " - anatomy", + "acc,none": 0.2518518518518518, + "acc_stderr,none": 0.03749850709174021 + }, + "mmlu_astronomy": { + "alias": " - astronomy", + "acc,none": 0.19078947368421054, + "acc_stderr,none": 0.031975658210325 + }, + "mmlu_college_biology": { + "alias": " - college_biology", + "acc,none": 0.24305555555555555, + "acc_stderr,none": 0.03586879280080341 + }, + "mmlu_college_chemistry": { + "alias": " - college_chemistry", + "acc,none": 0.24, + "acc_stderr,none": 0.042923469599092816 + }, + "mmlu_college_computer_science": { + "alias": " - college_computer_science", + "acc,none": 0.24, + "acc_stderr,none": 0.042923469599092816 + }, + "mmlu_college_mathematics": { + "alias": " - college_mathematics", + "acc,none": 0.26, + "acc_stderr,none": 0.04408440022768078 + }, + "mmlu_college_physics": { + "alias": " - college_physics", + "acc,none": 0.17647058823529413, + "acc_stderr,none": 0.0379328118530781 + }, + "mmlu_computer_security": { + "alias": " - computer_security", + "acc,none": 0.29, + "acc_stderr,none": 0.045604802157206845 + }, + "mmlu_conceptual_physics": { + "alias": " - conceptual_physics", + "acc,none": 0.33191489361702126, + "acc_stderr,none": 0.030783736757745657 + }, + "mmlu_electrical_engineering": { + "alias": " - electrical_engineering", + "acc,none": 0.23448275862068965, + "acc_stderr,none": 0.035306258743465914 + }, + "mmlu_elementary_mathematics": { + "alias": " - elementary_mathematics", + "acc,none": 0.2724867724867725, + "acc_stderr,none": 0.02293097307163334 + }, + "mmlu_high_school_biology": { + "alias": " - high_school_biology", + "acc,none": 0.2870967741935484, + "acc_stderr,none": 0.025736542745594518 + }, + "mmlu_high_school_chemistry": { + "alias": " - high_school_chemistry", + "acc,none": 0.23645320197044334, + "acc_stderr,none": 0.029896114291733552 + }, + "mmlu_high_school_computer_science": { + "alias": " - high_school_computer_science", + "acc,none": 0.23, + "acc_stderr,none": 0.042295258468165044 + }, + "mmlu_high_school_mathematics": { + "alias": " - high_school_mathematics", + "acc,none": 0.3111111111111111, + "acc_stderr,none": 0.028226446749683522 + }, + "mmlu_high_school_physics": { + "alias": " - high_school_physics", + "acc,none": 0.1986754966887417, + "acc_stderr,none": 0.032578473844367746 + }, + "mmlu_high_school_statistics": { + "alias": " - high_school_statistics", + "acc,none": 0.2824074074074074, + "acc_stderr,none": 0.030701372111510923 + }, + "mmlu_machine_learning": { + "alias": " - machine_learning", + "acc,none": 0.26785714285714285, + "acc_stderr,none": 0.04203277291467763 + } + }, + "groups": { + "mmlu": { + "acc,none": 0.2594359777809429, + "acc_stderr,none": 0.038721756918878456, + "alias": "mmlu" + }, + "mmlu_humanities": { + "alias": " - humanities", + "acc,none": 0.24867162592986186, + "acc_stderr,none": 0.03395931821381665 + }, + "mmlu_other": { + "alias": " - other", + "acc,none": 0.26649501126488573, + "acc_stderr,none": 0.035952550294869795 + }, + "mmlu_social_sciences": { + "alias": " - social_sciences", + "acc,none": 0.26649333766655836, + "acc_stderr,none": 0.03568643747433773 + }, + "mmlu_stem": { + "alias": " - stem", + "acc,none": 0.26165556612749763, + "acc_stderr,none": 0.04824334124808149 + } + }, + "configs": { + "mmlu_abstract_algebra": { + "task": "mmlu_abstract_algebra", + "task_alias": "abstract_algebra", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "abstract_algebra", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_anatomy": { + "task": "mmlu_anatomy", + "task_alias": "anatomy", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "anatomy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about anatomy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_astronomy": { + "task": "mmlu_astronomy", + "task_alias": "astronomy", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "astronomy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about astronomy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_business_ethics": { + "task": "mmlu_business_ethics", + "task_alias": "business_ethics", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "business_ethics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about business ethics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_clinical_knowledge": { + "task": "mmlu_clinical_knowledge", + "task_alias": "clinical_knowledge", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "clinical_knowledge", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_biology": { + "task": "mmlu_college_biology", + "task_alias": "college_biology", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_biology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college biology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_chemistry": { + "task": "mmlu_college_chemistry", + "task_alias": "college_chemistry", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_chemistry", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_computer_science": { + "task": "mmlu_college_computer_science", + "task_alias": "college_computer_science", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_computer_science", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college computer science.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_mathematics": { + "task": "mmlu_college_mathematics", + "task_alias": "college_mathematics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_mathematics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_medicine": { + "task": "mmlu_college_medicine", + "task_alias": "college_medicine", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_medicine", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college medicine.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_physics": { + "task": "mmlu_college_physics", + "task_alias": "college_physics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_physics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_computer_security": { + "task": "mmlu_computer_security", + "task_alias": "computer_security", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "computer_security", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about computer security.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_conceptual_physics": { + "task": "mmlu_conceptual_physics", + "task_alias": "conceptual_physics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "conceptual_physics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_econometrics": { + "task": "mmlu_econometrics", + "task_alias": "econometrics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "econometrics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about econometrics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_electrical_engineering": { + "task": "mmlu_electrical_engineering", + "task_alias": "electrical_engineering", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "electrical_engineering", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_elementary_mathematics": { + "task": "mmlu_elementary_mathematics", + "task_alias": "elementary_mathematics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "elementary_mathematics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_formal_logic": { + "task": "mmlu_formal_logic", + "task_alias": "formal_logic", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "formal_logic", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about formal logic.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_global_facts": { + "task": "mmlu_global_facts", + "task_alias": "global_facts", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "global_facts", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about global facts.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_biology": { + "task": "mmlu_high_school_biology", + "task_alias": "high_school_biology", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_biology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school biology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_chemistry": { + "task": "mmlu_high_school_chemistry", + "task_alias": "high_school_chemistry", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_chemistry", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_computer_science": { + "task": "mmlu_high_school_computer_science", + "task_alias": "high_school_computer_science", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_computer_science", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_european_history": { + "task": "mmlu_high_school_european_history", + "task_alias": "high_school_european_history", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_european_history", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school european history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_geography": { + "task": "mmlu_high_school_geography", + "task_alias": "high_school_geography", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_geography", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school geography.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_government_and_politics": { + "task": "mmlu_high_school_government_and_politics", + "task_alias": "high_school_government_and_politics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_government_and_politics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_macroeconomics": { + "task": "mmlu_high_school_macroeconomics", + "task_alias": "high_school_macroeconomics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_macroeconomics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_mathematics": { + "task": "mmlu_high_school_mathematics", + "task_alias": "high_school_mathematics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_mathematics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_microeconomics": { + "task": "mmlu_high_school_microeconomics", + "task_alias": "high_school_microeconomics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_microeconomics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_physics": { + "task": "mmlu_high_school_physics", + "task_alias": "high_school_physics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_physics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_psychology": { + "task": "mmlu_high_school_psychology", + "task_alias": "high_school_psychology", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_psychology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_statistics": { + "task": "mmlu_high_school_statistics", + "task_alias": "high_school_statistics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_statistics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_us_history": { + "task": "mmlu_high_school_us_history", + "task_alias": "high_school_us_history", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_us_history", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school us history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_world_history": { + "task": "mmlu_high_school_world_history", + "task_alias": "high_school_world_history", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_world_history", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school world history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_human_aging": { + "task": "mmlu_human_aging", + "task_alias": "human_aging", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "human_aging", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about human aging.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_human_sexuality": { + "task": "mmlu_human_sexuality", + "task_alias": "human_sexuality", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "human_sexuality", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_international_law": { + "task": "mmlu_international_law", + "task_alias": "international_law", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "international_law", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about international law.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_jurisprudence": { + "task": "mmlu_jurisprudence", + "task_alias": "jurisprudence", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "jurisprudence", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_logical_fallacies": { + "task": "mmlu_logical_fallacies", + "task_alias": "logical_fallacies", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "logical_fallacies", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_machine_learning": { + "task": "mmlu_machine_learning", + "task_alias": "machine_learning", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "machine_learning", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about machine learning.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_management": { + "task": "mmlu_management", + "task_alias": "management", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "management", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about management.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_marketing": { + "task": "mmlu_marketing", + "task_alias": "marketing", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "marketing", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about marketing.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_medical_genetics": { + "task": "mmlu_medical_genetics", + "task_alias": "medical_genetics", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "medical_genetics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_miscellaneous": { + "task": "mmlu_miscellaneous", + "task_alias": "miscellaneous", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "miscellaneous", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_moral_disputes": { + "task": "mmlu_moral_disputes", + "task_alias": "moral_disputes", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "moral_disputes", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_moral_scenarios": { + "task": "mmlu_moral_scenarios", + "task_alias": "moral_scenarios", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "moral_scenarios", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_nutrition": { + "task": "mmlu_nutrition", + "task_alias": "nutrition", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "nutrition", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about nutrition.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_philosophy": { + "task": "mmlu_philosophy", + "task_alias": "philosophy", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "philosophy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about philosophy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_prehistory": { + "task": "mmlu_prehistory", + "task_alias": "prehistory", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "prehistory", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about prehistory.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_accounting": { + "task": "mmlu_professional_accounting", + "task_alias": "professional_accounting", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_accounting", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_law": { + "task": "mmlu_professional_law", + "task_alias": "professional_law", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_law", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional law.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_medicine": { + "task": "mmlu_professional_medicine", + "task_alias": "professional_medicine", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_medicine", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_psychology": { + "task": "mmlu_professional_psychology", + "task_alias": "professional_psychology", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_psychology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_public_relations": { + "task": "mmlu_public_relations", + "task_alias": "public_relations", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "public_relations", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about public relations.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_security_studies": { + "task": "mmlu_security_studies", + "task_alias": "security_studies", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "security_studies", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about security studies.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_sociology": { + "task": "mmlu_sociology", + "task_alias": "sociology", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "sociology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about sociology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_us_foreign_policy": { + "task": "mmlu_us_foreign_policy", + "task_alias": "us_foreign_policy", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "us_foreign_policy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_virology": { + "task": "mmlu_virology", + "task_alias": "virology", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "virology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about virology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_world_religions": { + "task": "mmlu_world_religions", + "task_alias": "world_religions", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "world_religions", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about world religions.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + } + }, + "versions": { + "mmlu": "N/A", + "mmlu_abstract_algebra": 0.0, + "mmlu_anatomy": 0.0, + "mmlu_astronomy": 0.0, + "mmlu_business_ethics": 0.0, + "mmlu_clinical_knowledge": 0.0, + "mmlu_college_biology": 0.0, + "mmlu_college_chemistry": 0.0, + "mmlu_college_computer_science": 0.0, + "mmlu_college_mathematics": 0.0, + "mmlu_college_medicine": 0.0, + "mmlu_college_physics": 0.0, + "mmlu_computer_security": 0.0, + "mmlu_conceptual_physics": 0.0, + "mmlu_econometrics": 0.0, + "mmlu_electrical_engineering": 0.0, + "mmlu_elementary_mathematics": 0.0, + "mmlu_formal_logic": 0.0, + "mmlu_global_facts": 0.0, + "mmlu_high_school_biology": 0.0, + "mmlu_high_school_chemistry": 0.0, + "mmlu_high_school_computer_science": 0.0, + "mmlu_high_school_european_history": 0.0, + "mmlu_high_school_geography": 0.0, + "mmlu_high_school_government_and_politics": 0.0, + "mmlu_high_school_macroeconomics": 0.0, + "mmlu_high_school_mathematics": 0.0, + "mmlu_high_school_microeconomics": 0.0, + "mmlu_high_school_physics": 0.0, + "mmlu_high_school_psychology": 0.0, + "mmlu_high_school_statistics": 0.0, + "mmlu_high_school_us_history": 0.0, + "mmlu_high_school_world_history": 0.0, + "mmlu_human_aging": 0.0, + "mmlu_human_sexuality": 0.0, + "mmlu_humanities": "N/A", + "mmlu_international_law": 0.0, + "mmlu_jurisprudence": 0.0, + "mmlu_logical_fallacies": 0.0, + "mmlu_machine_learning": 0.0, + "mmlu_management": 0.0, + "mmlu_marketing": 0.0, + "mmlu_medical_genetics": 0.0, + "mmlu_miscellaneous": 0.0, + "mmlu_moral_disputes": 0.0, + "mmlu_moral_scenarios": 0.0, + "mmlu_nutrition": 0.0, + "mmlu_other": "N/A", + "mmlu_philosophy": 0.0, + "mmlu_prehistory": 0.0, + "mmlu_professional_accounting": 0.0, + "mmlu_professional_law": 0.0, + "mmlu_professional_medicine": 0.0, + "mmlu_professional_psychology": 0.0, + "mmlu_public_relations": 0.0, + "mmlu_security_studies": 0.0, + "mmlu_social_sciences": "N/A", + "mmlu_sociology": 0.0, + "mmlu_stem": "N/A", + "mmlu_us_foreign_policy": 0.0, + "mmlu_virology": 0.0, + "mmlu_world_religions": 0.0 + }, + "n-shot": { + "mmlu": 0, + "mmlu_abstract_algebra": 5, + "mmlu_anatomy": 5, + "mmlu_astronomy": 5, + "mmlu_business_ethics": 5, + "mmlu_clinical_knowledge": 5, + "mmlu_college_biology": 5, + "mmlu_college_chemistry": 5, + "mmlu_college_computer_science": 5, + "mmlu_college_mathematics": 5, + "mmlu_college_medicine": 5, + "mmlu_college_physics": 5, + "mmlu_computer_security": 5, + "mmlu_conceptual_physics": 5, + "mmlu_econometrics": 5, + "mmlu_electrical_engineering": 5, + "mmlu_elementary_mathematics": 5, + "mmlu_formal_logic": 5, + "mmlu_global_facts": 5, + "mmlu_high_school_biology": 5, + "mmlu_high_school_chemistry": 5, + "mmlu_high_school_computer_science": 5, + "mmlu_high_school_european_history": 5, + "mmlu_high_school_geography": 5, + "mmlu_high_school_government_and_politics": 5, + "mmlu_high_school_macroeconomics": 5, + "mmlu_high_school_mathematics": 5, + "mmlu_high_school_microeconomics": 5, + "mmlu_high_school_physics": 5, + "mmlu_high_school_psychology": 5, + "mmlu_high_school_statistics": 5, + "mmlu_high_school_us_history": 5, + "mmlu_high_school_world_history": 5, + "mmlu_human_aging": 5, + "mmlu_human_sexuality": 5, + "mmlu_humanities": 5, + "mmlu_international_law": 5, + "mmlu_jurisprudence": 5, + "mmlu_logical_fallacies": 5, + "mmlu_machine_learning": 5, + "mmlu_management": 5, + "mmlu_marketing": 5, + "mmlu_medical_genetics": 5, + "mmlu_miscellaneous": 5, + "mmlu_moral_disputes": 5, + "mmlu_moral_scenarios": 5, + "mmlu_nutrition": 5, + "mmlu_other": 5, + "mmlu_philosophy": 5, + "mmlu_prehistory": 5, + "mmlu_professional_accounting": 5, + "mmlu_professional_law": 5, + "mmlu_professional_medicine": 5, + "mmlu_professional_psychology": 5, + "mmlu_public_relations": 5, + "mmlu_security_studies": 5, + "mmlu_social_sciences": 5, + "mmlu_sociology": 5, + "mmlu_stem": 5, + "mmlu_us_foreign_policy": 5, + "mmlu_virology": 5, + "mmlu_world_religions": 5 + }, + "config": { + "model": "hf", + "model_args": "pretrained=RWKV/rwkv-4-world-7b,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 16 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "f7ea5c5" +} \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-4-world-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..aa178f9fabaa518e37a1f234f32be94a03347d8f --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6e5ec04e4492d43ff16c1e6cdb8b6e1c02260b04e8de8fa8e000424eed4fd1e6 +size 139376 diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/truthfulqa/dtype=float16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-4-world-7b/truthfulqa/dtype=float16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..bff006a58f7d0eafcf949e485cfff671dea999dc --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/truthfulqa/dtype=float16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,282 @@ +{ + "results": { + "truthfulqa": { + "acc,none": 0.28423052705946994, + "acc_stderr,none": 0.001034700142833498, + "bleu_max,none": 0.01577206435664631, + "bleu_max_stderr,none": 0.002255163843493232, + "bleu_acc,none": 0.006119951040391677, + "bleu_acc_stderr,none": 0.0027302089178066944, + "bleu_diff,none": -3.163384289607278e-05, + "bleu_diff_stderr,none": 0.0008504233327829333, + "rouge1_max,none": 2.2721266317542645, + "rouge1_max_stderr,none": 0.22343075535560017, + "rouge1_acc,none": 0.07466340269277846, + "rouge1_acc_stderr,none": 0.009201501035844096, + "rouge1_diff,none": -0.11073781985269729, + "rouge1_diff_stderr,none": 0.2143049141742196, + "rouge2_max,none": 0.0, + "rouge2_max_stderr,none": 0.0, + "rouge2_acc,none": 0.0, + "rouge2_acc_stderr,none": 0.0, + "rouge2_diff,none": 0.0, + "rouge2_diff_stderr,none": 0.0, + "rougeL_max,none": 2.2652744193409764, + "rougeL_max_stderr,none": 0.22342083854607495, + "rougeL_acc,none": 0.07588739290085679, + "rougeL_acc_stderr,none": 0.009270479217707212, + "rougeL_diff,none": -0.1040161327348345, + "rougeL_diff_stderr,none": 0.21417941840020896, + "alias": "truthfulqa" + }, + "truthfulqa_gen": { + "bleu_max,none": 0.01577206435664631, + "bleu_max_stderr,none": 0.002255163843493232, + "bleu_acc,none": 0.006119951040391677, + "bleu_acc_stderr,none": 0.0027302089178066944, + "bleu_diff,none": -3.163384289607278e-05, + "bleu_diff_stderr,none": 0.0008504233327829333, + "rouge1_max,none": 2.2721266317542645, + "rouge1_max_stderr,none": 0.22343075535560017, + "rouge1_acc,none": 0.07466340269277846, + "rouge1_acc_stderr,none": 0.009201501035844096, + "rouge1_diff,none": -0.11073781985269729, + "rouge1_diff_stderr,none": 0.2143049141742196, + "rouge2_max,none": 0.0, + "rouge2_max_stderr,none": 0.0, + "rouge2_acc,none": 0.0, + "rouge2_acc_stderr,none": 0.0, + "rouge2_diff,none": 0.0, + "rouge2_diff_stderr,none": 0.0, + "rougeL_max,none": 2.2652744193409764, + "rougeL_max_stderr,none": 0.22342083854607495, + "rougeL_acc,none": 0.07588739290085679, + "rougeL_acc_stderr,none": 0.009270479217707212, + "rougeL_diff,none": -0.1040161327348345, + "rougeL_diff_stderr,none": 0.21417941840020896, + "alias": " - truthfulqa_gen" + }, + "truthfulqa_mc1": { + "acc,none": 0.22643818849449204, + "acc_stderr,none": 0.014651337324602574, + "alias": " - truthfulqa_mc1" + }, + "truthfulqa_mc2": { + "acc,none": 0.34202286562444784, + "acc_stderr,none": 0.013564028754753956, + "alias": " - truthfulqa_mc2" + } + }, + "groups": { + "truthfulqa": { + "acc,none": 0.28423052705946994, + "acc_stderr,none": 0.001034700142833498, + "bleu_max,none": 0.01577206435664631, + "bleu_max_stderr,none": 0.002255163843493232, + "bleu_acc,none": 0.006119951040391677, + "bleu_acc_stderr,none": 0.0027302089178066944, + "bleu_diff,none": -3.163384289607278e-05, + "bleu_diff_stderr,none": 0.0008504233327829333, + "rouge1_max,none": 2.2721266317542645, + "rouge1_max_stderr,none": 0.22343075535560017, + "rouge1_acc,none": 0.07466340269277846, + "rouge1_acc_stderr,none": 0.009201501035844096, + "rouge1_diff,none": -0.11073781985269729, + "rouge1_diff_stderr,none": 0.2143049141742196, + "rouge2_max,none": 0.0, + "rouge2_max_stderr,none": 0.0, + "rouge2_acc,none": 0.0, + "rouge2_acc_stderr,none": 0.0, + "rouge2_diff,none": 0.0, + "rouge2_diff_stderr,none": 0.0, + "rougeL_max,none": 2.2652744193409764, + "rougeL_max_stderr,none": 0.22342083854607495, + "rougeL_acc,none": 0.07588739290085679, + "rougeL_acc_stderr,none": 0.009270479217707212, + "rougeL_diff,none": -0.1040161327348345, + "rougeL_diff_stderr,none": 0.21417941840020896, + "alias": "truthfulqa" + } + }, + "configs": { + "truthfulqa_gen": { + "task": "truthfulqa_gen", + "group": [ + "truthfulqa" + ], + "dataset_path": "truthful_qa", + "dataset_name": "generation", + "validation_split": "validation", + "process_docs": "def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:\n return dataset.map(preprocess_function)\n", + "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question}}", + "doc_to_target": " ", + "process_results": "def process_results_gen(doc, results):\n completion = results[0]\n true_refs, false_refs = doc[\"correct_answers\"], doc[\"incorrect_answers\"]\n all_refs = true_refs + false_refs\n\n # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.\n\n # # BLEURT\n # bleurt_scores_true = self.bleurt.compute(\n # predictions=[completion] * len(true_refs), references=true_refs\n # )[\"scores\"]\n # bleurt_scores_false = self.bleurt.compute(\n # predictions=[completion] * len(false_refs), references=false_refs\n # )[\"scores\"]\n # bleurt_correct = max(bleurt_scores_true)\n # bleurt_incorrect = max(bleurt_scores_false)\n # bleurt_max = bleurt_correct\n # bleurt_diff = bleurt_correct - bleurt_incorrect\n # bleurt_acc = int(bleurt_correct > bleurt_incorrect)\n\n # BLEU\n bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]\n bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])\n bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])\n bleu_max = bleu_correct\n bleu_diff = bleu_correct - bleu_incorrect\n bleu_acc = int(bleu_correct > bleu_incorrect)\n\n # ROUGE-N\n rouge_scores = [rouge([ref], [completion]) for ref in all_refs]\n # ROUGE-1\n rouge1_scores = [score[\"rouge1\"] for score in rouge_scores]\n rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])\n rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])\n rouge1_max = rouge1_correct\n rouge1_diff = rouge1_correct - rouge1_incorrect\n rouge1_acc = int(rouge1_correct > rouge1_incorrect)\n # ROUGE-2\n rouge2_scores = [score[\"rouge2\"] for score in rouge_scores]\n rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])\n rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])\n rouge2_max = rouge2_correct\n rouge2_diff = rouge2_correct - rouge2_incorrect\n rouge2_acc = int(rouge2_correct > rouge2_incorrect)\n # ROUGE-L\n rougeL_scores = [score[\"rougeLsum\"] for score in rouge_scores]\n rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])\n rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])\n rougeL_max = rougeL_correct\n rougeL_diff = rougeL_correct - rougeL_incorrect\n rougeL_acc = int(rougeL_correct > rougeL_incorrect)\n\n return {\n # \"bleurt_max\": bleurt_max,\n # \"bleurt_acc\": bleurt_acc,\n # \"bleurt_diff\": bleurt_diff,\n \"bleu_max\": bleu_max,\n \"bleu_acc\": bleu_acc,\n \"bleu_diff\": bleu_diff,\n \"rouge1_max\": rouge1_max,\n \"rouge1_acc\": rouge1_acc,\n \"rouge1_diff\": rouge1_diff,\n \"rouge2_max\": rouge2_max,\n \"rouge2_acc\": rouge2_acc,\n \"rouge2_diff\": rouge2_diff,\n \"rougeL_max\": rougeL_max,\n \"rougeL_acc\": rougeL_acc,\n \"rougeL_diff\": rougeL_diff,\n }\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 0, + "metric_list": [ + { + "metric": "bleu_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "bleu_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "bleu_diff", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge1_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge1_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge1_diff", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge2_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge2_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rouge2_diff", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rougeL_max", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rougeL_acc", + "aggregation": "mean", + "higher_is_better": true + }, + { + "metric": "rougeL_diff", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "generate_until", + "generation_kwargs": { + "until": [ + "\n\n" + ], + "do_sample": false + }, + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "question", + "metadata": { + "version": 3.0 + } + }, + "truthfulqa_mc1": { + "task": "truthfulqa_mc1", + "group": [ + "truthfulqa" + ], + "dataset_path": "truthful_qa", + "dataset_name": "multiple_choice", + "validation_split": "validation", + "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", + "doc_to_target": 0, + "doc_to_choice": "{{mc1_targets.choices}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 0, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "question", + "metadata": { + "version": 2.0 + } + }, + "truthfulqa_mc2": { + "task": "truthfulqa_mc2", + "group": [ + "truthfulqa" + ], + "dataset_path": "truthful_qa", + "dataset_name": "multiple_choice", + "validation_split": "validation", + "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", + "doc_to_target": 0, + "doc_to_choice": "{{mc2_targets.choices}}", + "process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 0, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "question", + "metadata": { + "version": 2.0 + } + } + }, + "versions": { + "truthfulqa": "N/A", + "truthfulqa_gen": 3.0, + "truthfulqa_mc1": 2.0, + "truthfulqa_mc2": 2.0 + }, + "n-shot": { + "truthfulqa": 0, + "truthfulqa_gen": 0, + "truthfulqa_mc1": 0, + "truthfulqa_mc2": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=RWKV/rwkv-4-world-7b,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/truthfulqa/dtype=float16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-4-world-7b/truthfulqa/dtype=float16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..4cc9ac22614b919344896bb20eb1a4abd6d470e1 --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/truthfulqa/dtype=float16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:89639269ff42ed257c5c587d8624c902e68d40f53e6696bff9e5063e2a8a7a6a +size 542141 diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-4-world-7b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..d9f861d36837593394b2247687db6f4dc1b145c1 --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json @@ -0,0 +1,59 @@ +{ + "results": { + "winogrande": { + "acc,none": 0.6235201262825573, + "acc_stderr,none": 0.013616931960667183, + "alias": "winogrande" + } + }, + "configs": { + "winogrande": { + "task": "winogrande", + "dataset_path": "winogrande", + "dataset_name": "winogrande_xl", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "sentence", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "winogrande": 1.0 + }, + "n-shot": { + "winogrande": 5 + }, + "config": { + "model": "hf", + "model_args": "pretrained=RWKV/rwkv-4-world-7b,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-4-world-7b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-4-world-7b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..1dc3541b728bb2779ac9fdd215d5c6e4f4937a35 --- /dev/null +++ b/lm-eval-output/RWKV/rwkv-4-world-7b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4581569008e7e135ca45313f8aa67e2388f9449910fc061591e2ef45fd1b0c7e +size 14738 diff --git a/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json index ff20420c338d54e4c1ab185c447554bd02dc06db..245aa64bd74743beb960465d91f28e8df620151d 100644 --- a/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +++ b/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -1,30 +1,30 @@ { "results": { "anli": { - "acc,none": 0.3446875, - "acc_stderr,none": 0.016295763026756137, + "acc,none": 0.3440625, + "acc_stderr,none": 0.016316503264106327, "alias": "anli" }, "anli_r1": { "acc,none": 0.358, - "acc_stderr,none": 0.01516792886540756, + "acc_stderr,none": 0.015167928865407633, "alias": " - anli_r1" }, "anli_r2": { - "acc,none": 0.33, - "acc_stderr,none": 0.014876872027456727, + "acc,none": 0.329, + "acc_stderr,none": 0.014865395385928355, "alias": " - anli_r2" }, "anli_r3": { - "acc,none": 0.3458333333333333, - "acc_stderr,none": 0.013736245342311012, + "acc,none": 0.345, + "acc_stderr,none": 0.013728421539454956, "alias": " - anli_r3" } }, "groups": { "anli": { - "acc,none": 0.3446875, - "acc_stderr,none": 0.016295763026756137, + "acc,none": 0.3440625, + "acc_stderr,none": 0.016316503264106327, "alias": "anli" } }, @@ -157,5 +157,5 @@ "bootstrap_iters": 100000, "gen_kwargs": null }, - "git_hash": "265992e" + "git_hash": "045c403" } \ No newline at end of file diff --git a/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log index 485e95575e5eda887f61405ed3776b8cb95138d9..ee2e2b68023228d3716270d3383ff9b42a59173d 100644 --- a/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +++ b/lm-eval-output/RWKV/rwkv-5-world-1b5/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:8228db124171b9c7c5cfed05f6c24917522fa458a579a4983526ba091c398145 -size 35768 +oid sha256:58de7d53679aac6afbd2bd23d31e486b52df942822efd46ebad9d2a7a61a6109 +size 30228 diff --git a/lm-eval-output/rwkv-x-dev/Hermes-RWKV-v5-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/Hermes-RWKV-v5-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..8f0ffedac4ad467bc4dd797332d11fb3a9b92da5 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/Hermes-RWKV-v5-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json @@ -0,0 +1,2727 @@ +{ + "results": { + "mmlu": { + "acc,none": 0.3166215638797892, + "acc_stderr,none": 0.00388470559897429, + "alias": "mmlu" + }, + "mmlu_humanities": { + "alias": " - humanities", + "acc,none": 0.3141339001062699, + "acc_stderr,none": 0.006704234651858884 + }, + "mmlu_formal_logic": { + "alias": " - formal_logic", + "acc,none": 0.25396825396825395, + "acc_stderr,none": 0.03893259610604674 + }, + "mmlu_high_school_european_history": { + "alias": " - high_school_european_history", + "acc,none": 0.4666666666666667, + "acc_stderr,none": 0.03895658065271847 + }, + "mmlu_high_school_us_history": { + "alias": " - high_school_us_history", + "acc,none": 0.3627450980392157, + "acc_stderr,none": 0.03374499356319355 + }, + "mmlu_high_school_world_history": { + "alias": " - high_school_world_history", + "acc,none": 0.4008438818565401, + "acc_stderr,none": 0.031900803894732356 + }, + "mmlu_international_law": { + "alias": " - international_law", + "acc,none": 0.4214876033057851, + "acc_stderr,none": 0.045077322787750944 + }, + "mmlu_jurisprudence": { + "alias": " - jurisprudence", + "acc,none": 0.37962962962962965, + "acc_stderr,none": 0.04691521224077742 + }, + "mmlu_logical_fallacies": { + "alias": " - logical_fallacies", + "acc,none": 0.4233128834355828, + "acc_stderr,none": 0.03881891213334384 + }, + "mmlu_moral_disputes": { + "alias": " - moral_disputes", + "acc,none": 0.33815028901734107, + "acc_stderr,none": 0.02546977014940017 + }, + "mmlu_moral_scenarios": { + "alias": " - moral_scenarios", + "acc,none": 0.24692737430167597, + "acc_stderr,none": 0.01442229220480884 + }, + "mmlu_philosophy": { + "alias": " - philosophy", + "acc,none": 0.3440514469453376, + "acc_stderr,none": 0.02698147804364802 + }, + "mmlu_prehistory": { + "alias": " - prehistory", + "acc,none": 0.3055555555555556, + "acc_stderr,none": 0.025630824975621344 + }, + "mmlu_professional_law": { + "alias": " - professional_law", + "acc,none": 0.2711864406779661, + "acc_stderr,none": 0.011354581451622985 + }, + "mmlu_world_religions": { + "alias": " - world_religions", + "acc,none": 0.4619883040935672, + "acc_stderr,none": 0.038237270928823064 + }, + "mmlu_other": { + "alias": " - other", + "acc,none": 0.36498229803669135, + "acc_stderr,none": 0.00853170443009378 + }, + "mmlu_business_ethics": { + "alias": " - business_ethics", + "acc,none": 0.42, + "acc_stderr,none": 0.049604496374885836 + }, + "mmlu_clinical_knowledge": { + "alias": " - clinical_knowledge", + "acc,none": 0.2943396226415094, + "acc_stderr,none": 0.028049186315695245 + }, + "mmlu_college_medicine": { + "alias": " - college_medicine", + "acc,none": 0.2543352601156069, + "acc_stderr,none": 0.03320556443085569 + }, + "mmlu_global_facts": { + "alias": " - global_facts", + "acc,none": 0.35, + "acc_stderr,none": 0.0479372485441102 + }, + "mmlu_human_aging": { + "alias": " - human_aging", + "acc,none": 0.4349775784753363, + "acc_stderr,none": 0.03327283370271345 + }, + "mmlu_management": { + "alias": " - management", + "acc,none": 0.3106796116504854, + "acc_stderr,none": 0.04582124160161551 + }, + "mmlu_marketing": { + "alias": " - marketing", + "acc,none": 0.452991452991453, + "acc_stderr,none": 0.03261099873098619 + }, + "mmlu_medical_genetics": { + "alias": " - medical_genetics", + "acc,none": 0.31, + "acc_stderr,none": 0.04648231987117316 + }, + "mmlu_miscellaneous": { + "alias": " - miscellaneous", + "acc,none": 0.45977011494252873, + "acc_stderr,none": 0.017821994096933535 + }, + "mmlu_nutrition": { + "alias": " - nutrition", + "acc,none": 0.32679738562091504, + "acc_stderr,none": 0.026857294663281402 + }, + "mmlu_professional_accounting": { + "alias": " - professional_accounting", + "acc,none": 0.25177304964539005, + "acc_stderr,none": 0.0258921511567094 + }, + "mmlu_professional_medicine": { + "alias": " - professional_medicine", + "acc,none": 0.27941176470588236, + "acc_stderr,none": 0.027257202606114948 + }, + "mmlu_virology": { + "alias": " - virology", + "acc,none": 0.37349397590361444, + "acc_stderr,none": 0.03765845117168862 + }, + "mmlu_social_sciences": { + "alias": " - social_sciences", + "acc,none": 0.3230419239519012, + "acc_stderr,none": 0.008407738163570856 + }, + "mmlu_econometrics": { + "alias": " - econometrics", + "acc,none": 0.23684210526315788, + "acc_stderr,none": 0.03999423879281335 + }, + "mmlu_high_school_geography": { + "alias": " - high_school_geography", + "acc,none": 0.3333333333333333, + "acc_stderr,none": 0.03358618145732523 + }, + "mmlu_high_school_government_and_politics": { + "alias": " - high_school_government_and_politics", + "acc,none": 0.37305699481865284, + "acc_stderr,none": 0.03490205592048574 + }, + "mmlu_high_school_macroeconomics": { + "alias": " - high_school_macroeconomics", + "acc,none": 0.28205128205128205, + "acc_stderr,none": 0.0228158130988966 + }, + "mmlu_high_school_microeconomics": { + "alias": " - high_school_microeconomics", + "acc,none": 0.2773109243697479, + "acc_stderr,none": 0.02907937453948001 + }, + "mmlu_high_school_psychology": { + "alias": " - high_school_psychology", + "acc,none": 0.3614678899082569, + "acc_stderr,none": 0.020598082009937364 + }, + "mmlu_human_sexuality": { + "alias": " - human_sexuality", + "acc,none": 0.3511450381679389, + "acc_stderr,none": 0.04186445163013751 + }, + "mmlu_professional_psychology": { + "alias": " - professional_psychology", + "acc,none": 0.29901960784313725, + "acc_stderr,none": 0.018521756215423024 + }, + "mmlu_public_relations": { + "alias": " - public_relations", + "acc,none": 0.34545454545454546, + "acc_stderr,none": 0.04554619617541054 + }, + "mmlu_security_studies": { + "alias": " - security_studies", + "acc,none": 0.2816326530612245, + "acc_stderr,none": 0.028795185574291286 + }, + "mmlu_sociology": { + "alias": " - sociology", + "acc,none": 0.3781094527363184, + "acc_stderr,none": 0.034288678487786564 + }, + "mmlu_us_foreign_policy": { + "alias": " - us_foreign_policy", + "acc,none": 0.44, + "acc_stderr,none": 0.049888765156985884 + }, + "mmlu_stem": { + "alias": " - stem", + "acc,none": 0.2664129400570885, + "acc_stderr,none": 0.007824542079053826 + }, + "mmlu_abstract_algebra": { + "alias": " - abstract_algebra", + "acc,none": 0.28, + "acc_stderr,none": 0.04512608598542128 + }, + "mmlu_anatomy": { + "alias": " - anatomy", + "acc,none": 0.28888888888888886, + "acc_stderr,none": 0.0391545063041425 + }, + "mmlu_astronomy": { + "alias": " - astronomy", + "acc,none": 0.23684210526315788, + "acc_stderr,none": 0.03459777606810535 + }, + "mmlu_college_biology": { + "alias": " - college_biology", + "acc,none": 0.2638888888888889, + "acc_stderr,none": 0.03685651095897532 + }, + "mmlu_college_chemistry": { + "alias": " - college_chemistry", + "acc,none": 0.23, + "acc_stderr,none": 0.04229525846816508 + }, + "mmlu_college_computer_science": { + "alias": " - college_computer_science", + "acc,none": 0.23, + "acc_stderr,none": 0.04229525846816508 + }, + "mmlu_college_mathematics": { + "alias": " - college_mathematics", + "acc,none": 0.22, + "acc_stderr,none": 0.041633319989322695 + }, + "mmlu_college_physics": { + "alias": " - college_physics", + "acc,none": 0.21568627450980393, + "acc_stderr,none": 0.040925639582376556 + }, + "mmlu_computer_security": { + "alias": " - computer_security", + "acc,none": 0.29, + "acc_stderr,none": 0.04560480215720684 + }, + "mmlu_conceptual_physics": { + "alias": " - conceptual_physics", + "acc,none": 0.3404255319148936, + "acc_stderr,none": 0.030976692998534443 + }, + "mmlu_electrical_engineering": { + "alias": " - electrical_engineering", + "acc,none": 0.296551724137931, + "acc_stderr,none": 0.03806142687309994 + }, + "mmlu_elementary_mathematics": { + "alias": " - elementary_mathematics", + "acc,none": 0.24338624338624337, + "acc_stderr,none": 0.022101128787415426 + }, + "mmlu_high_school_biology": { + "alias": " - high_school_biology", + "acc,none": 0.3935483870967742, + "acc_stderr,none": 0.027791878753132264 + }, + "mmlu_high_school_chemistry": { + "alias": " - high_school_chemistry", + "acc,none": 0.20689655172413793, + "acc_stderr,none": 0.02850137816789395 + }, + "mmlu_high_school_computer_science": { + "alias": " - high_school_computer_science", + "acc,none": 0.31, + "acc_stderr,none": 0.046482319871173156 + }, + "mmlu_high_school_mathematics": { + "alias": " - high_school_mathematics", + "acc,none": 0.23333333333333334, + "acc_stderr,none": 0.02578787422095931 + }, + "mmlu_high_school_physics": { + "alias": " - high_school_physics", + "acc,none": 0.2119205298013245, + "acc_stderr,none": 0.03336767086567977 + }, + "mmlu_high_school_statistics": { + "alias": " - high_school_statistics", + "acc,none": 0.18055555555555555, + "acc_stderr,none": 0.026232878971491666 + }, + "mmlu_machine_learning": { + "alias": " - machine_learning", + "acc,none": 0.32142857142857145, + "acc_stderr,none": 0.044328040552915185 + } + }, + "groups": { + "mmlu": { + "acc,none": 0.3166215638797892, + "acc_stderr,none": 0.00388470559897429, + "alias": "mmlu" + }, + "mmlu_humanities": { + "alias": " - humanities", + "acc,none": 0.3141339001062699, + "acc_stderr,none": 0.006704234651858884 + }, + "mmlu_other": { + "alias": " - other", + "acc,none": 0.36498229803669135, + "acc_stderr,none": 0.00853170443009378 + }, + "mmlu_social_sciences": { + "alias": " - social_sciences", + "acc,none": 0.3230419239519012, + "acc_stderr,none": 0.008407738163570856 + }, + "mmlu_stem": { + "alias": " - stem", + "acc,none": 0.2664129400570885, + "acc_stderr,none": 0.007824542079053826 + } + }, + "group_subtasks": { + "mmlu_stem": [ + "mmlu_high_school_mathematics", + "mmlu_electrical_engineering", + "mmlu_abstract_algebra", + "mmlu_high_school_statistics", + "mmlu_machine_learning", + "mmlu_astronomy", + "mmlu_high_school_biology", + "mmlu_college_computer_science", + "mmlu_college_mathematics", + "mmlu_college_chemistry", + "mmlu_high_school_computer_science", + "mmlu_computer_security", + "mmlu_college_biology", + "mmlu_high_school_chemistry", + "mmlu_conceptual_physics", + "mmlu_anatomy", + "mmlu_elementary_mathematics", + "mmlu_high_school_physics", + "mmlu_college_physics" + ], + "mmlu_other": [ + "mmlu_management", + "mmlu_nutrition", + "mmlu_professional_medicine", + "mmlu_marketing", + "mmlu_college_medicine", + "mmlu_clinical_knowledge", + "mmlu_medical_genetics", + "mmlu_professional_accounting", + "mmlu_virology", + "mmlu_human_aging", + "mmlu_global_facts", + "mmlu_business_ethics", + "mmlu_miscellaneous" + ], + "mmlu_social_sciences": [ + "mmlu_high_school_government_and_politics", + "mmlu_high_school_psychology", + "mmlu_high_school_microeconomics", + "mmlu_security_studies", + "mmlu_econometrics", + "mmlu_high_school_geography", + "mmlu_human_sexuality", + "mmlu_public_relations", + "mmlu_us_foreign_policy", + "mmlu_professional_psychology", + "mmlu_high_school_macroeconomics", + "mmlu_sociology" + ], + "mmlu_humanities": [ + "mmlu_philosophy", + "mmlu_moral_scenarios", + "mmlu_high_school_world_history", + "mmlu_professional_law", + "mmlu_high_school_european_history", + "mmlu_moral_disputes", + "mmlu_high_school_us_history", + "mmlu_international_law", + "mmlu_formal_logic", + "mmlu_prehistory", + "mmlu_logical_fallacies", + "mmlu_jurisprudence", + "mmlu_world_religions" + ], + "mmlu": [ + "mmlu_humanities", + "mmlu_social_sciences", + "mmlu_other", + "mmlu_stem" + ] + }, + "configs": { + "mmlu_abstract_algebra": { + "task": "mmlu_abstract_algebra", + "task_alias": "abstract_algebra", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "abstract_algebra", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_anatomy": { + "task": "mmlu_anatomy", + "task_alias": "anatomy", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "anatomy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about anatomy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_astronomy": { + "task": "mmlu_astronomy", + "task_alias": "astronomy", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "astronomy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about astronomy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_business_ethics": { + "task": "mmlu_business_ethics", + "task_alias": "business_ethics", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "business_ethics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about business ethics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_clinical_knowledge": { + "task": "mmlu_clinical_knowledge", + "task_alias": "clinical_knowledge", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "clinical_knowledge", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_biology": { + "task": "mmlu_college_biology", + "task_alias": "college_biology", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_biology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college biology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_chemistry": { + "task": "mmlu_college_chemistry", + "task_alias": "college_chemistry", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_chemistry", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_computer_science": { + "task": "mmlu_college_computer_science", + "task_alias": "college_computer_science", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_computer_science", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college computer science.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_mathematics": { + "task": "mmlu_college_mathematics", + "task_alias": "college_mathematics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_mathematics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_medicine": { + "task": "mmlu_college_medicine", + "task_alias": "college_medicine", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_medicine", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college medicine.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_college_physics": { + "task": "mmlu_college_physics", + "task_alias": "college_physics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "college_physics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about college physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_computer_security": { + "task": "mmlu_computer_security", + "task_alias": "computer_security", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "computer_security", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about computer security.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_conceptual_physics": { + "task": "mmlu_conceptual_physics", + "task_alias": "conceptual_physics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "conceptual_physics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_econometrics": { + "task": "mmlu_econometrics", + "task_alias": "econometrics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "econometrics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about econometrics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_electrical_engineering": { + "task": "mmlu_electrical_engineering", + "task_alias": "electrical_engineering", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "electrical_engineering", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_elementary_mathematics": { + "task": "mmlu_elementary_mathematics", + "task_alias": "elementary_mathematics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "elementary_mathematics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_formal_logic": { + "task": "mmlu_formal_logic", + "task_alias": "formal_logic", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "formal_logic", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about formal logic.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_global_facts": { + "task": "mmlu_global_facts", + "task_alias": "global_facts", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "global_facts", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about global facts.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_biology": { + "task": "mmlu_high_school_biology", + "task_alias": "high_school_biology", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_biology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school biology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_chemistry": { + "task": "mmlu_high_school_chemistry", + "task_alias": "high_school_chemistry", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_chemistry", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_computer_science": { + "task": "mmlu_high_school_computer_science", + "task_alias": "high_school_computer_science", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_computer_science", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_european_history": { + "task": "mmlu_high_school_european_history", + "task_alias": "high_school_european_history", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_european_history", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school european history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_geography": { + "task": "mmlu_high_school_geography", + "task_alias": "high_school_geography", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_geography", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school geography.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_government_and_politics": { + "task": "mmlu_high_school_government_and_politics", + "task_alias": "high_school_government_and_politics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_government_and_politics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_macroeconomics": { + "task": "mmlu_high_school_macroeconomics", + "task_alias": "high_school_macroeconomics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_macroeconomics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_mathematics": { + "task": "mmlu_high_school_mathematics", + "task_alias": "high_school_mathematics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_mathematics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_microeconomics": { + "task": "mmlu_high_school_microeconomics", + "task_alias": "high_school_microeconomics", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_microeconomics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_physics": { + "task": "mmlu_high_school_physics", + "task_alias": "high_school_physics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_physics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school physics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_psychology": { + "task": "mmlu_high_school_psychology", + "task_alias": "high_school_psychology", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_psychology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_statistics": { + "task": "mmlu_high_school_statistics", + "task_alias": "high_school_statistics", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_statistics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_us_history": { + "task": "mmlu_high_school_us_history", + "task_alias": "high_school_us_history", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_us_history", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school us history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_high_school_world_history": { + "task": "mmlu_high_school_world_history", + "task_alias": "high_school_world_history", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "high_school_world_history", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about high school world history.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_human_aging": { + "task": "mmlu_human_aging", + "task_alias": "human_aging", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "human_aging", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about human aging.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_human_sexuality": { + "task": "mmlu_human_sexuality", + "task_alias": "human_sexuality", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "human_sexuality", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_international_law": { + "task": "mmlu_international_law", + "task_alias": "international_law", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "international_law", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about international law.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_jurisprudence": { + "task": "mmlu_jurisprudence", + "task_alias": "jurisprudence", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "jurisprudence", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_logical_fallacies": { + "task": "mmlu_logical_fallacies", + "task_alias": "logical_fallacies", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "logical_fallacies", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_machine_learning": { + "task": "mmlu_machine_learning", + "task_alias": "machine_learning", + "group": "mmlu_stem", + "group_alias": "stem", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "machine_learning", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about machine learning.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_management": { + "task": "mmlu_management", + "task_alias": "management", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "management", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about management.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_marketing": { + "task": "mmlu_marketing", + "task_alias": "marketing", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "marketing", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about marketing.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_medical_genetics": { + "task": "mmlu_medical_genetics", + "task_alias": "medical_genetics", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "medical_genetics", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_miscellaneous": { + "task": "mmlu_miscellaneous", + "task_alias": "miscellaneous", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "miscellaneous", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_moral_disputes": { + "task": "mmlu_moral_disputes", + "task_alias": "moral_disputes", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "moral_disputes", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_moral_scenarios": { + "task": "mmlu_moral_scenarios", + "task_alias": "moral_scenarios", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "moral_scenarios", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_nutrition": { + "task": "mmlu_nutrition", + "task_alias": "nutrition", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "nutrition", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about nutrition.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_philosophy": { + "task": "mmlu_philosophy", + "task_alias": "philosophy", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "philosophy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about philosophy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_prehistory": { + "task": "mmlu_prehistory", + "task_alias": "prehistory", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "prehistory", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about prehistory.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_accounting": { + "task": "mmlu_professional_accounting", + "task_alias": "professional_accounting", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_accounting", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_law": { + "task": "mmlu_professional_law", + "task_alias": "professional_law", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_law", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional law.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_medicine": { + "task": "mmlu_professional_medicine", + "task_alias": "professional_medicine", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_medicine", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_professional_psychology": { + "task": "mmlu_professional_psychology", + "task_alias": "professional_psychology", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "professional_psychology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_public_relations": { + "task": "mmlu_public_relations", + "task_alias": "public_relations", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "public_relations", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about public relations.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_security_studies": { + "task": "mmlu_security_studies", + "task_alias": "security_studies", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "security_studies", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about security studies.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_sociology": { + "task": "mmlu_sociology", + "task_alias": "sociology", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "sociology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about sociology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_us_foreign_policy": { + "task": "mmlu_us_foreign_policy", + "task_alias": "us_foreign_policy", + "group": "mmlu_social_sciences", + "group_alias": "social_sciences", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "us_foreign_policy", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_virology": { + "task": "mmlu_virology", + "task_alias": "virology", + "group": "mmlu_other", + "group_alias": "other", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "virology", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about virology.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "mmlu_world_religions": { + "task": "mmlu_world_religions", + "task_alias": "world_religions", + "group": "mmlu_humanities", + "group_alias": "humanities", + "dataset_path": "hails/mmlu_no_train", + "dataset_name": "world_religions", + "test_split": "test", + "fewshot_split": "dev", + "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", + "doc_to_target": "answer", + "doc_to_choice": [ + "A", + "B", + "C", + "D" + ], + "description": "The following are multiple choice questions (with answers) about world religions.\n\n", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "fewshot_config": { + "sampler": "first_n" + }, + "num_fewshot": 5, + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + } + }, + "versions": { + "mmlu": "N/A", + "mmlu_abstract_algebra": 0.0, + "mmlu_anatomy": 0.0, + "mmlu_astronomy": 0.0, + "mmlu_business_ethics": 0.0, + "mmlu_clinical_knowledge": 0.0, + "mmlu_college_biology": 0.0, + "mmlu_college_chemistry": 0.0, + "mmlu_college_computer_science": 0.0, + "mmlu_college_mathematics": 0.0, + "mmlu_college_medicine": 0.0, + "mmlu_college_physics": 0.0, + "mmlu_computer_security": 0.0, + "mmlu_conceptual_physics": 0.0, + "mmlu_econometrics": 0.0, + "mmlu_electrical_engineering": 0.0, + "mmlu_elementary_mathematics": 0.0, + "mmlu_formal_logic": 0.0, + "mmlu_global_facts": 0.0, + "mmlu_high_school_biology": 0.0, + "mmlu_high_school_chemistry": 0.0, + "mmlu_high_school_computer_science": 0.0, + "mmlu_high_school_european_history": 0.0, + "mmlu_high_school_geography": 0.0, + "mmlu_high_school_government_and_politics": 0.0, + "mmlu_high_school_macroeconomics": 0.0, + "mmlu_high_school_mathematics": 0.0, + "mmlu_high_school_microeconomics": 0.0, + "mmlu_high_school_physics": 0.0, + "mmlu_high_school_psychology": 0.0, + "mmlu_high_school_statistics": 0.0, + "mmlu_high_school_us_history": 0.0, + "mmlu_high_school_world_history": 0.0, + "mmlu_human_aging": 0.0, + "mmlu_human_sexuality": 0.0, + "mmlu_humanities": "N/A", + "mmlu_international_law": 0.0, + "mmlu_jurisprudence": 0.0, + "mmlu_logical_fallacies": 0.0, + "mmlu_machine_learning": 0.0, + "mmlu_management": 0.0, + "mmlu_marketing": 0.0, + "mmlu_medical_genetics": 0.0, + "mmlu_miscellaneous": 0.0, + "mmlu_moral_disputes": 0.0, + "mmlu_moral_scenarios": 0.0, + "mmlu_nutrition": 0.0, + "mmlu_other": "N/A", + "mmlu_philosophy": 0.0, + "mmlu_prehistory": 0.0, + "mmlu_professional_accounting": 0.0, + "mmlu_professional_law": 0.0, + "mmlu_professional_medicine": 0.0, + "mmlu_professional_psychology": 0.0, + "mmlu_public_relations": 0.0, + "mmlu_security_studies": 0.0, + "mmlu_social_sciences": "N/A", + "mmlu_sociology": 0.0, + "mmlu_stem": "N/A", + "mmlu_us_foreign_policy": 0.0, + "mmlu_virology": 0.0, + "mmlu_world_religions": 0.0 + }, + "n-shot": { + "mmlu": 0, + "mmlu_abstract_algebra": 5, + "mmlu_anatomy": 5, + "mmlu_astronomy": 5, + "mmlu_business_ethics": 5, + "mmlu_clinical_knowledge": 5, + "mmlu_college_biology": 5, + "mmlu_college_chemistry": 5, + "mmlu_college_computer_science": 5, + "mmlu_college_mathematics": 5, + "mmlu_college_medicine": 5, + "mmlu_college_physics": 5, + "mmlu_computer_security": 5, + "mmlu_conceptual_physics": 5, + "mmlu_econometrics": 5, + "mmlu_electrical_engineering": 5, + "mmlu_elementary_mathematics": 5, + "mmlu_formal_logic": 5, + "mmlu_global_facts": 5, + "mmlu_high_school_biology": 5, + "mmlu_high_school_chemistry": 5, + "mmlu_high_school_computer_science": 5, + "mmlu_high_school_european_history": 5, + "mmlu_high_school_geography": 5, + "mmlu_high_school_government_and_politics": 5, + "mmlu_high_school_macroeconomics": 5, + "mmlu_high_school_mathematics": 5, + "mmlu_high_school_microeconomics": 5, + "mmlu_high_school_physics": 5, + "mmlu_high_school_psychology": 5, + "mmlu_high_school_statistics": 5, + "mmlu_high_school_us_history": 5, + "mmlu_high_school_world_history": 5, + "mmlu_human_aging": 5, + "mmlu_human_sexuality": 5, + "mmlu_humanities": 5, + "mmlu_international_law": 5, + "mmlu_jurisprudence": 5, + "mmlu_logical_fallacies": 5, + "mmlu_machine_learning": 5, + "mmlu_management": 5, + "mmlu_marketing": 5, + "mmlu_medical_genetics": 5, + "mmlu_miscellaneous": 5, + "mmlu_moral_disputes": 5, + "mmlu_moral_scenarios": 5, + "mmlu_nutrition": 5, + "mmlu_other": 5, + "mmlu_philosophy": 5, + "mmlu_prehistory": 5, + "mmlu_professional_accounting": 5, + "mmlu_professional_law": 5, + "mmlu_professional_medicine": 5, + "mmlu_professional_psychology": 5, + "mmlu_public_relations": 5, + "mmlu_security_studies": 5, + "mmlu_social_sciences": 5, + "mmlu_sociology": 5, + "mmlu_stem": 5, + "mmlu_us_foreign_policy": 5, + "mmlu_virology": 5, + "mmlu_world_religions": 5 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/Hermes-RWKV-v5-7B_pth,dtype=float16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 8 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "f8bc085", + "pretty_env_info": "PyTorch version: 2.1.2+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.11.8 (main, Feb 7 2024, 04:02:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA GeForce RTX 4090\nGPU 1: NVIDIA GeForce RTX 4090\nGPU 2: NVIDIA GeForce RTX 4090\nGPU 3: NVIDIA GeForce RTX 4090\nGPU 4: NVIDIA GeForce RTX 4090\nGPU 5: NVIDIA GeForce RTX 4090\nGPU 6: NVIDIA GeForce RTX 4090\n\nNvidia driver version: 535.154.05\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 160\nOn-line CPU(s) list: 0-159\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7773X 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 80\nSocket(s): 2\nStepping: 2\nBogoMIPS: 4399.99\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean flushbyasid pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid fsrm arch_capabilities\nVirtualization: AMD-V\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 10 MiB (160 instances)\nL1i cache: 10 MiB (160 instances)\nL2 cache: 80 MiB (160 instances)\nL3 cache: 2.5 GiB (160 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-79\nNUMA node1 CPU(s): 80-159\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.1.2\n[pip3] triton==2.1.0\n[conda] Could not collect", + "transformers_version": "4.37.2", + "upper_git_hash": null +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/Hermes-RWKV-v5-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/Hermes-RWKV-v5-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..8bdbd005eb18192148af3d1007ecc40567c59081 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/Hermes-RWKV-v5-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2d1cb1c72f31b1ab830a976f7c43488d538439c24ef668bc69be41c47a90b6d9 +size 156979 diff --git a/lm-eval-output/rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..134f9cc19b255ab05e98007f028718e676bdb6bd --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,161 @@ +{ + "results": { + "anli": { + "acc,none": 0.344375, + "acc_stderr,none": 0.016214535725893844, + "alias": "anli" + }, + "anli_r1": { + "acc,none": 0.358, + "acc_stderr,none": 0.015167928865407557, + "alias": " - anli_r1" + }, + "anli_r2": { + "acc,none": 0.33, + "acc_stderr,none": 0.014876872027456732, + "alias": " - anli_r2" + }, + "anli_r3": { + "acc,none": 0.345, + "acc_stderr,none": 0.013728421539454876, + "alias": " - anli_r3" + } + }, + "groups": { + "anli": { + "acc,none": 0.344375, + "acc_stderr,none": 0.016214535725893844, + "alias": "anli" + } + }, + "configs": { + "anli_r1": { + "task": "anli_r1", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r1", + "validation_split": "dev_r1", + "test_split": "test_r1", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r2": { + "task": "anli_r2", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r2", + "validation_split": "dev_r2", + "test_split": "test_r2", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r3": { + "task": "anli_r3", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r3", + "validation_split": "dev_r3", + "test_split": "test_r3", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "anli": "N/A", + "anli_r1": 1.0, + "anli_r2": 1.0, + "anli_r3": 1.0 + }, + "n-shot": { + "anli": 0, + "anli_r1": 0, + "anli_r2": 0, + "anli_r3": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "21ea2be" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..51a7347ccbc549abaf580b2678c921d34f4cf987 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:27555d595a02781c9452058a1f85606baa66169a5f28c8aab8428c430334b573 +size 36004 diff --git a/lm-eval-output/rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..1af18b8276aafb7f9186cef04d586699c62d14d2 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,161 @@ +{ + "results": { + "anli": { + "acc,none": 0.3475, + "acc_stderr,none": 0.014733637524722431, + "alias": "anli" + }, + "anli_r1": { + "acc,none": 0.352, + "acc_stderr,none": 0.015110404505648666, + "alias": " - anli_r1" + }, + "anli_r2": { + "acc,none": 0.346, + "acc_stderr,none": 0.015050266127564448, + "alias": " - anli_r2" + }, + "anli_r3": { + "acc,none": 0.345, + "acc_stderr,none": 0.013728421539454878, + "alias": " - anli_r3" + } + }, + "groups": { + "anli": { + "acc,none": 0.3475, + "acc_stderr,none": 0.014733637524722431, + "alias": "anli" + } + }, + "configs": { + "anli_r1": { + "task": "anli_r1", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r1", + "validation_split": "dev_r1", + "test_split": "test_r1", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r2": { + "task": "anli_r2", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r2", + "validation_split": "dev_r2", + "test_split": "test_r2", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r3": { + "task": "anli_r3", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r3", + "validation_split": "dev_r3", + "test_split": "test_r3", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "anli": "N/A", + "anli_r1": 1.0, + "anli_r2": 1.0, + "anli_r3": 1.0 + }, + "n-shot": { + "anli": 0, + "anli_r1": 0, + "anli_r2": 0, + "anli_r3": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "178a71c" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..d8b208baedb302fceca339fe5d83d158e76bc6b3 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cca91ebc0562e20f7275132fc2b6730448757daea58d7599db4bd6fe8a2825bf +size 42498 diff --git a/lm-eval-output/rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..c2f40fa54454bab318dba23e979b40505495bceb --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,161 @@ +{ + "results": { + "anli": { + "acc,none": 0.3590625, + "acc_stderr,none": 0.017704453505961715, + "alias": "anli" + }, + "anli_r1": { + "acc,none": 0.38, + "acc_stderr,none": 0.015356947477797658, + "alias": " - anli_r1" + }, + "anli_r2": { + "acc,none": 0.345, + "acc_stderr,none": 0.015039986742055365, + "alias": " - anli_r2" + }, + "anli_r3": { + "acc,none": 0.35333333333333333, + "acc_stderr,none": 0.013804572162314963, + "alias": " - anli_r3" + } + }, + "groups": { + "anli": { + "acc,none": 0.3590625, + "acc_stderr,none": 0.017704453505961715, + "alias": "anli" + } + }, + "configs": { + "anli_r1": { + "task": "anli_r1", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r1", + "validation_split": "dev_r1", + "test_split": "test_r1", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r2": { + "task": "anli_r2", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r2", + "validation_split": "dev_r2", + "test_split": "test_r2", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r3": { + "task": "anli_r3", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r3", + "validation_split": "dev_r3", + "test_split": "test_r3", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "anli": "N/A", + "anli_r1": 1.0, + "anli_r2": 1.0, + "anli_r3": 1.0 + }, + "n-shot": { + "anli": 0, + "anli_r1": 0, + "anli_r2": 0, + "anli_r3": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "045c403" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..968f0772f44e70834d123dc44f696b1b90b4649c --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:60d9b33da723ef7af2484614065fb6c7060afe73ab155bf30b62a6c25c3946f3 +size 39512 diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk0-0_8/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..4e6f38ab0918724272170619754a19dd3a7fe514 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,252 @@ +{ + "results": { + "lambada_multilingual": { + "perplexity,none": 22.68161709472492, + "perplexity_stderr,none": 8.983430640757419, + "acc,none": 0.5288569765185329, + "acc_stderr,none": 0.08749521294502276, + "alias": "lambada_multilingual" + }, + "lambada_openai_mt_de": { + "perplexity,none": 37.86655344359018, + "perplexity_stderr,none": 2.100999477932107, + "acc,none": 0.4143217543178731, + "acc_stderr,none": 0.006862944515138106, + "alias": " - lambada_openai_mt_de" + }, + "lambada_openai_mt_en": { + "perplexity,none": 3.4189100202716127, + "perplexity_stderr,none": 0.06747672057677712, + "acc,none": 0.74345041723268, + "acc_stderr,none": 0.006084483727167681, + "alias": " - lambada_openai_mt_en" + }, + "lambada_openai_mt_es": { + "perplexity,none": 30.321835089362246, + "perplexity_stderr,none": 1.4875105016323116, + "acc,none": 0.4492528624102465, + "acc_stderr,none": 0.006930006207066418, + "alias": " - lambada_openai_mt_es" + }, + "lambada_openai_mt_fr": { + "perplexity,none": 17.955361395663022, + "perplexity_stderr,none": 0.8705126621613513, + "acc,none": 0.5381331263341743, + "acc_stderr,none": 0.006945689163596064, + "alias": " - lambada_openai_mt_fr" + }, + "lambada_openai_mt_it": { + "perplexity,none": 23.845425524737557, + "perplexity_stderr,none": 1.2630858405325902, + "acc,none": 0.4991267222976907, + "acc_stderr,none": 0.006965967032480235, + "alias": " - lambada_openai_mt_it" + } + }, + "groups": { + "lambada_multilingual": { + "perplexity,none": 22.68161709472492, + "perplexity_stderr,none": 8.983430640757419, + "acc,none": 0.5288569765185329, + "acc_stderr,none": 0.08749521294502276, + "alias": "lambada_multilingual" + } + }, + "configs": { + "lambada_openai_mt_de": { + "task": "lambada_openai_mt_de", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "de", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_en": { + "task": "lambada_openai_mt_en", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_es": { + "task": "lambada_openai_mt_es", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "es", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_fr": { + "task": "lambada_openai_mt_fr", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_it": { + "task": "lambada_openai_mt_it", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "it", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "lambada_multilingual": "N/A", + "lambada_openai_mt_de": 1.0, + "lambada_openai_mt_en": 1.0, + "lambada_openai_mt_es": 1.0, + "lambada_openai_mt_fr": 1.0, + "lambada_openai_mt_it": 1.0 + }, + "n-shot": { + "lambada_multilingual": 0, + "lambada_openai_mt_de": 0, + "lambada_openai_mt_en": 0, + "lambada_openai_mt_es": 0, + "lambada_openai_mt_fr": 0, + "lambada_openai_mt_it": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk0-0_8_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk0-0_8/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..2d1903551d05e8bcf613c7316e94e8dc5e317d10 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:37f338338e20586d549725781a2acffeac81617e6b1babd85504f7d969dc10f5 +size 39973 diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk0-0_8/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..2d6e7e6d4fa2c3ada3c42e2dcc57a17cf540509a --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,283 @@ +{ + "results": { + "pawsx": { + "acc,none": 0.4807142857142857, + "acc_stderr,none": 0.05275166826504779, + "alias": "pawsx" + }, + "paws_de": { + "acc,none": 0.4355, + "acc_stderr,none": 0.011089696374691104, + "alias": " - paws_de" + }, + "paws_en": { + "acc,none": 0.375, + "acc_stderr,none": 0.010828024891988879, + "alias": " - paws_en" + }, + "paws_es": { + "acc,none": 0.4285, + "acc_stderr,none": 0.011068203447885417, + "alias": " - paws_es" + }, + "paws_fr": { + "acc,none": 0.5485, + "acc_stderr,none": 0.01113040061763076, + "alias": " - paws_fr" + }, + "paws_ja": { + "acc,none": 0.554, + "acc_stderr,none": 0.011117724672834362, + "alias": " - paws_ja" + }, + "paws_ko": { + "acc,none": 0.511, + "acc_stderr,none": 0.011180429374603772, + "alias": " - paws_ko" + }, + "paws_zh": { + "acc,none": 0.5125, + "acc_stderr,none": 0.011179640744835738, + "alias": " - paws_zh" + } + }, + "groups": { + "pawsx": { + "acc,none": 0.4807142857142857, + "acc_stderr,none": 0.05275166826504779, + "alias": "pawsx" + } + }, + "configs": { + "paws_de": { + "task": "paws_de", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_en": { + "task": "paws_en", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_es": { + "task": "paws_es", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_fr": { + "task": "paws_fr", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ja": { + "task": "paws_ja", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ja", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ko": { + "task": "paws_ko", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ko", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_zh": { + "task": "paws_zh", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + } + }, + "versions": { + "paws_de": 0.0, + "paws_en": 0.0, + "paws_es": 0.0, + "paws_fr": 0.0, + "paws_ja": 0.0, + "paws_ko": 0.0, + "paws_zh": 0.0, + "pawsx": "N/A" + }, + "n-shot": { + "paws_de": 0, + "paws_en": 0, + "paws_es": 0, + "paws_fr": 0, + "paws_ja": 0, + "paws_ko": 0, + "paws_zh": 0, + "pawsx": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk0-0_8_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk0-0_8/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..1221cd52bc09113aef84aa8eaae0f0fcf593ebe2 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7aa09b7fb78c1888a12aeeffb9e7f0794d792cbc9731aff1c91ad3aad81e6b96 +size 44968 diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..98d2858c66df25120ad6d15166b63981db8617ac --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,390 @@ +{ + "results": { + "xcopa": { + "acc,none": 0.614909090909091, + "acc_stderr,none": 0.07005321638148351, + "alias": "xcopa" + }, + "xcopa_et": { + "acc,none": 0.582, + "acc_stderr,none": 0.022080014812228134, + "alias": " - xcopa_et" + }, + "xcopa_ht": { + "acc,none": 0.524, + "acc_stderr,none": 0.022357273881016403, + "alias": " - xcopa_ht" + }, + "xcopa_id": { + "acc,none": 0.708, + "acc_stderr,none": 0.020354375480530065, + "alias": " - xcopa_id" + }, + "xcopa_it": { + "acc,none": 0.744, + "acc_stderr,none": 0.019536923574747615, + "alias": " - xcopa_it" + }, + "xcopa_qu": { + "acc,none": 0.502, + "acc_stderr,none": 0.022382894986483524, + "alias": " - xcopa_qu" + }, + "xcopa_sw": { + "acc,none": 0.554, + "acc_stderr,none": 0.022252153078595897, + "alias": " - xcopa_sw" + }, + "xcopa_ta": { + "acc,none": 0.574, + "acc_stderr,none": 0.022136577335085637, + "alias": " - xcopa_ta" + }, + "xcopa_th": { + "acc,none": 0.562, + "acc_stderr,none": 0.022210326363977413, + "alias": " - xcopa_th" + }, + "xcopa_tr": { + "acc,none": 0.628, + "acc_stderr,none": 0.0216371979857224, + "alias": " - xcopa_tr" + }, + "xcopa_vi": { + "acc,none": 0.706, + "acc_stderr,none": 0.02039509548493661, + "alias": " - xcopa_vi" + }, + "xcopa_zh": { + "acc,none": 0.68, + "acc_stderr,none": 0.02088234048876181, + "alias": " - xcopa_zh" + } + }, + "groups": { + "xcopa": { + "acc,none": 0.614909090909091, + "acc_stderr,none": 0.07005321638148351, + "alias": "xcopa" + } + }, + "configs": { + "xcopa_et": { + "task": "xcopa_et", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "et", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'sest', 'effect': 'seetõttu'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ht": { + "task": "xcopa_ht", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ht", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'poukisa', 'effect': 'donk sa'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_id": { + "task": "xcopa_id", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "id", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'karena', 'effect': 'maka'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_it": { + "task": "xcopa_it", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "it", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'perché', 'effect': 'quindi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_qu": { + "task": "xcopa_qu", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "qu", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'imataq', 'effect': 'chaymi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_sw": { + "task": "xcopa_sw", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "sw", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ta": { + "task": "xcopa_ta", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ta", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_th": { + "task": "xcopa_th", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "th", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_tr": { + "task": "xcopa_tr", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "tr", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_vi": { + "task": "xcopa_vi", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "vi", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_zh": { + "task": "xcopa_zh", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "zh", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': '因为', 'effect': '所以'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xcopa": "N/A", + "xcopa_et": 1.0, + "xcopa_ht": 1.0, + "xcopa_id": 1.0, + "xcopa_it": 1.0, + "xcopa_qu": 1.0, + "xcopa_sw": 1.0, + "xcopa_ta": 1.0, + "xcopa_th": 1.0, + "xcopa_tr": 1.0, + "xcopa_vi": 1.0, + "xcopa_zh": 1.0 + }, + "n-shot": { + "xcopa": 0, + "xcopa_et": 0, + "xcopa_ht": 0, + "xcopa_id": 0, + "xcopa_it": 0, + "xcopa_qu": 0, + "xcopa_sw": 0, + "xcopa_ta": 0, + "xcopa_th": 0, + "xcopa_tr": 0, + "xcopa_vi": 0, + "xcopa_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk0-0_8_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..63399120ae18088d924469726dc93f3a044f6a93 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c968697b7ddf2c3eb993911221b73c43b181d904650e6c2628d3fd4337e1ae32 +size 31907 diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..c5c11d21fe0d6c825b89b3de293391217d734312 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,548 @@ +{ + "results": { + "xnli": { + "acc,none": 0.43978580990629185, + "acc_stderr,none": 0.050673050690104825, + "alias": "xnli" + }, + "xnli_ar": { + "acc,none": 0.3333333333333333, + "acc_stderr,none": 0.009448900914617617, + "alias": " - xnli_ar" + }, + "xnli_bg": { + "acc,none": 0.47269076305220886, + "acc_stderr,none": 0.010007112889731976, + "alias": " - xnli_bg" + }, + "xnli_de": { + "acc,none": 0.4903614457831325, + "acc_stderr,none": 0.010020210558438292, + "alias": " - xnli_de" + }, + "xnli_el": { + "acc,none": 0.39518072289156625, + "acc_stderr,none": 0.00979937189274674, + "alias": " - xnli_el" + }, + "xnli_en": { + "acc,none": 0.5373493975903615, + "acc_stderr,none": 0.009994072620561413, + "alias": " - xnli_en" + }, + "xnli_es": { + "acc,none": 0.5036144578313253, + "acc_stderr,none": 0.010021811000966338, + "alias": " - xnli_es" + }, + "xnli_fr": { + "acc,none": 0.4947791164658635, + "acc_stderr,none": 0.010021526496530354, + "alias": " - xnli_fr" + }, + "xnli_hi": { + "acc,none": 0.43333333333333335, + "acc_stderr,none": 0.009932588282324241, + "alias": " - xnli_hi" + }, + "xnli_ru": { + "acc,none": 0.4911646586345382, + "acc_stderr,none": 0.01002050803376262, + "alias": " - xnli_ru" + }, + "xnli_sw": { + "acc,none": 0.39558232931726905, + "acc_stderr,none": 0.009801094347134984, + "alias": " - xnli_sw" + }, + "xnli_th": { + "acc,none": 0.42208835341365464, + "acc_stderr,none": 0.00989965271489543, + "alias": " - xnli_th" + }, + "xnli_tr": { + "acc,none": 0.44136546184738956, + "acc_stderr,none": 0.009952922349377741, + "alias": " - xnli_tr" + }, + "xnli_ur": { + "acc,none": 0.41325301204819276, + "acc_stderr,none": 0.009870087435623781, + "alias": " - xnli_ur" + }, + "xnli_vi": { + "acc,none": 0.42449799196787147, + "acc_stderr,none": 0.009907151253284282, + "alias": " - xnli_vi" + }, + "xnli_zh": { + "acc,none": 0.3481927710843373, + "acc_stderr,none": 0.009548980649153386, + "alias": " - xnli_zh" + } + }, + "groups": { + "xnli": { + "acc,none": 0.43978580990629185, + "acc_stderr,none": 0.050673050690104825, + "alias": "xnli" + } + }, + "configs": { + "xnli_ar": { + "task": "xnli_ar", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_bg": { + "task": "xnli_bg", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "bg", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_de": { + "task": "xnli_de", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_el": { + "task": "xnli_el", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "el", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_en": { + "task": "xnli_en", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_es": { + "task": "xnli_es", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_fr": { + "task": "xnli_fr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_hi": { + "task": "xnli_hi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ru": { + "task": "xnli_ru", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_sw": { + "task": "xnli_sw", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_th": { + "task": "xnli_th", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "th", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_tr": { + "task": "xnli_tr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "tr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ur": { + "task": "xnli_ur", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ur", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_vi": { + "task": "xnli_vi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "vi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_zh": { + "task": "xnli_zh", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xnli": "N/A", + "xnli_ar": 1.0, + "xnli_bg": 1.0, + "xnli_de": 1.0, + "xnli_el": 1.0, + "xnli_en": 1.0, + "xnli_es": 1.0, + "xnli_fr": 1.0, + "xnli_hi": 1.0, + "xnli_ru": 1.0, + "xnli_sw": 1.0, + "xnli_th": 1.0, + "xnli_tr": 1.0, + "xnli_ur": 1.0, + "xnli_vi": 1.0, + "xnli_zh": 1.0 + }, + "n-shot": { + "xnli": 0, + "xnli_ar": 0, + "xnli_bg": 0, + "xnli_de": 0, + "xnli_el": 0, + "xnli_en": 0, + "xnli_es": 0, + "xnli_fr": 0, + "xnli_hi": 0, + "xnli_ru": 0, + "xnli_sw": 0, + "xnli_th": 0, + "xnli_tr": 0, + "xnli_ur": 0, + "xnli_vi": 0, + "xnli_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk0-0_8_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..666dce14e2b4c464c0d0594aefd0029ecd40be39 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8f18344ee393a0dc55b501a5080f5c16abc284385aee648d3a5e94429e33ebc +size 159394 diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..ba635e1e7eb219c3447cf3f3fafdc222522b8127 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,423 @@ +{ + "results": { + "xstorycloze": { + "acc,none": 0.6252331388003128, + "acc_stderr,none": 0.0517489831929997, + "alias": "xstorycloze" + }, + "xstorycloze_ar": { + "acc,none": 0.5936465916611515, + "acc_stderr,none": 0.012639429420389868, + "alias": " - xstorycloze_ar" + }, + "xstorycloze_en": { + "acc,none": 0.771012574454004, + "acc_stderr,none": 0.010813046586508208, + "alias": " - xstorycloze_en" + }, + "xstorycloze_es": { + "acc,none": 0.7015221707478491, + "acc_stderr,none": 0.011775741556409997, + "alias": " - xstorycloze_es" + }, + "xstorycloze_eu": { + "acc,none": 0.5585704831237591, + "acc_stderr,none": 0.012778538985880637, + "alias": " - xstorycloze_eu" + }, + "xstorycloze_hi": { + "acc,none": 0.6015883520847121, + "acc_stderr,none": 0.012598743938252869, + "alias": " - xstorycloze_hi" + }, + "xstorycloze_id": { + "acc,none": 0.6598279285241562, + "acc_stderr,none": 0.012192034998028832, + "alias": " - xstorycloze_id" + }, + "xstorycloze_my": { + "acc,none": 0.5380542686962276, + "acc_stderr,none": 0.012829804720321709, + "alias": " - xstorycloze_my" + }, + "xstorycloze_ru": { + "acc,none": 0.6790205162144275, + "acc_stderr,none": 0.012014110213469808, + "alias": " - xstorycloze_ru" + }, + "xstorycloze_sw": { + "acc,none": 0.557246856386499, + "acc_stderr,none": 0.012782510750319229, + "alias": " - xstorycloze_sw" + }, + "xstorycloze_te": { + "acc,none": 0.5936465916611515, + "acc_stderr,none": 0.012639429420389868, + "alias": " - xstorycloze_te" + }, + "xstorycloze_zh": { + "acc,none": 0.6234281932495036, + "acc_stderr,none": 0.012468914489659352, + "alias": " - xstorycloze_zh" + } + }, + "groups": { + "xstorycloze": { + "acc,none": 0.6252331388003128, + "acc_stderr,none": 0.0517489831929997, + "alias": "xstorycloze" + } + }, + "configs": { + "xstorycloze_ar": { + "task": "xstorycloze_ar", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_en": { + "task": "xstorycloze_en", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "en", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_es": { + "task": "xstorycloze_es", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "es", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_eu": { + "task": "xstorycloze_eu", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "eu", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_hi": { + "task": "xstorycloze_hi", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_id": { + "task": "xstorycloze_id", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "id", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_my": { + "task": "xstorycloze_my", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "my", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_ru": { + "task": "xstorycloze_ru", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_sw": { + "task": "xstorycloze_sw", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_te": { + "task": "xstorycloze_te", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "te", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_zh": { + "task": "xstorycloze_zh", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xstorycloze": "N/A", + "xstorycloze_ar": 1.0, + "xstorycloze_en": 1.0, + "xstorycloze_es": 1.0, + "xstorycloze_eu": 1.0, + "xstorycloze_hi": 1.0, + "xstorycloze_id": 1.0, + "xstorycloze_my": 1.0, + "xstorycloze_ru": 1.0, + "xstorycloze_sw": 1.0, + "xstorycloze_te": 1.0, + "xstorycloze_zh": 1.0 + }, + "n-shot": { + "xstorycloze": 0, + "xstorycloze_ar": 0, + "xstorycloze_en": 0, + "xstorycloze_es": 0, + "xstorycloze_eu": 0, + "xstorycloze_hi": 0, + "xstorycloze_id": 0, + "xstorycloze_my": 0, + "xstorycloze_ru": 0, + "xstorycloze_sw": 0, + "xstorycloze_te": 0, + "xstorycloze_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk0-0_8_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 16 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..f00625e6f588c705464c82b47a401e07686c4533 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2459966cf6454670973b24828d9af8189a19971f74b559101254b51c2afa3354 +size 73720 diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..27e7730eceb63cfc38b10e5e2af0ff11b2e405d6 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,248 @@ +{ + "results": { + "xwinograd": { + "acc,none": 0.8134412227466846, + "acc_stderr,none": 0.04636606288689369, + "alias": "xwinograd" + }, + "xwinograd_en": { + "acc,none": 0.8713978494623655, + "acc_stderr,none": 0.006944073285393217, + "alias": " - xwinograd_en" + }, + "xwinograd_fr": { + "acc,none": 0.7228915662650602, + "acc_stderr,none": 0.04942589299783092, + "alias": " - xwinograd_fr" + }, + "xwinograd_jp": { + "acc,none": 0.7434827945776851, + "acc_stderr,none": 0.014109478326566517, + "alias": " - xwinograd_jp" + }, + "xwinograd_pt": { + "acc,none": 0.8022813688212928, + "acc_stderr,none": 0.02460574422970023, + "alias": " - xwinograd_pt" + }, + "xwinograd_ru": { + "acc,none": 0.6698412698412698, + "acc_stderr,none": 0.0265388756462877, + "alias": " - xwinograd_ru" + }, + "xwinograd_zh": { + "acc,none": 0.7896825396825397, + "acc_stderr,none": 0.01817104649769028, + "alias": " - xwinograd_zh" + } + }, + "groups": { + "xwinograd": { + "acc,none": 0.8134412227466846, + "acc_stderr,none": 0.04636606288689369, + "alias": "xwinograd" + } + }, + "configs": { + "xwinograd_en": { + "task": "xwinograd_en", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_fr": { + "task": "xwinograd_fr", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_jp": { + "task": "xwinograd_jp", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "jp", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_pt": { + "task": "xwinograd_pt", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "pt", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_ru": { + "task": "xwinograd_ru", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "ru", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_zh": { + "task": "xwinograd_zh", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "zh", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xwinograd": "N/A", + "xwinograd_en": 1.0, + "xwinograd_fr": 1.0, + "xwinograd_jp": 1.0, + "xwinograd_pt": 1.0, + "xwinograd_ru": 1.0, + "xwinograd_zh": 1.0 + }, + "n-shot": { + "xwinograd": 0, + "xwinograd_en": 0, + "xwinograd_fr": 0, + "xwinograd_jp": 0, + "xwinograd_pt": 0, + "xwinograd_ru": 0, + "xwinograd_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk0-0_8_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk0-0_8/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..0a1c098094e5a95dceb13d45d636f43c2a6de420 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk0-0_8/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:57b334e538d542d41a31a11d23c41e2df2769722039338f3832107d711d1e4be +size 65660 diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk4-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..434edfe0670d07da02ae021d82e2d7da61799202 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,252 @@ +{ + "results": { + "lambada_multilingual": { + "perplexity,none": 21.832234733698144, + "perplexity_stderr,none": 8.415292070944634, + "acc,none": 0.5299825344459538, + "acc_stderr,none": 0.08274638819423422, + "alias": "lambada_multilingual" + }, + "lambada_openai_mt_de": { + "perplexity,none": 36.34046844881654, + "perplexity_stderr,none": 1.9962098907424244, + "acc,none": 0.41199301377838154, + "acc_stderr,none": 0.00685722250340594, + "alias": " - lambada_openai_mt_de" + }, + "lambada_openai_mt_en": { + "perplexity,none": 3.437220887016358, + "perplexity_stderr,none": 0.06778919167041969, + "acc,none": 0.7407335532699398, + "acc_stderr,none": 0.006105429762071468, + "alias": " - lambada_openai_mt_en" + }, + "lambada_openai_mt_es": { + "perplexity,none": 29.2603870504389, + "perplexity_stderr,none": 1.4175706580885417, + "acc,none": 0.45294003493110807, + "acc_stderr,none": 0.00693505475187018, + "alias": " - lambada_openai_mt_es" + }, + "lambada_openai_mt_fr": { + "perplexity,none": 17.236615788985663, + "perplexity_stderr,none": 0.8300948230057906, + "acc,none": 0.5418202988550359, + "acc_stderr,none": 0.006941568775008241, + "alias": " - lambada_openai_mt_fr" + }, + "lambada_openai_mt_it": { + "perplexity,none": 22.886481493233262, + "perplexity_stderr,none": 1.2058891353470027, + "acc,none": 0.5024257713953038, + "acc_stderr,none": 0.006965895675973327, + "alias": " - lambada_openai_mt_it" + } + }, + "groups": { + "lambada_multilingual": { + "perplexity,none": 21.832234733698144, + "perplexity_stderr,none": 8.415292070944634, + "acc,none": 0.5299825344459538, + "acc_stderr,none": 0.08274638819423422, + "alias": "lambada_multilingual" + } + }, + "configs": { + "lambada_openai_mt_de": { + "task": "lambada_openai_mt_de", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "de", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_en": { + "task": "lambada_openai_mt_en", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_es": { + "task": "lambada_openai_mt_es", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "es", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_fr": { + "task": "lambada_openai_mt_fr", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_it": { + "task": "lambada_openai_mt_it", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "it", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "lambada_multilingual": "N/A", + "lambada_openai_mt_de": 1.0, + "lambada_openai_mt_en": 1.0, + "lambada_openai_mt_es": 1.0, + "lambada_openai_mt_fr": 1.0, + "lambada_openai_mt_it": 1.0 + }, + "n-shot": { + "lambada_multilingual": 0, + "lambada_openai_mt_de": 0, + "lambada_openai_mt_en": 0, + "lambada_openai_mt_es": 0, + "lambada_openai_mt_fr": 0, + "lambada_openai_mt_it": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk4-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk4-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..739b4e9ee4a554ede7ebb5c6d10ffcbb89eba71f --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:651d8a6d10649e4db1adba4e7029e239bb6528fb19fc902a53a32582af6e8ae6 +size 67042 diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk4-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..306bf3f3b53dbb212bddf6177cf76586214d8abe --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,283 @@ +{ + "results": { + "pawsx": { + "acc,none": 0.47764285714285715, + "acc_stderr,none": 0.0523955794519198, + "alias": "pawsx" + }, + "paws_de": { + "acc,none": 0.4335, + "acc_stderr,none": 0.011083785461207559, + "alias": " - paws_de" + }, + "paws_en": { + "acc,none": 0.3765, + "acc_stderr,none": 0.01083663191658967, + "alias": " - paws_en" + }, + "paws_es": { + "acc,none": 0.4205, + "acc_stderr,none": 0.01104087068182141, + "alias": " - paws_es" + }, + "paws_fr": { + "acc,none": 0.5485, + "acc_stderr,none": 0.01113040061763076, + "alias": " - paws_fr" + }, + "paws_ja": { + "acc,none": 0.552, + "acc_stderr,none": 0.01112249319745629, + "alias": " - paws_ja" + }, + "paws_ko": { + "acc,none": 0.509, + "acc_stderr,none": 0.01118132420626028, + "alias": " - paws_ko" + }, + "paws_zh": { + "acc,none": 0.5035, + "acc_stderr,none": 0.011182862030875627, + "alias": " - paws_zh" + } + }, + "groups": { + "pawsx": { + "acc,none": 0.47764285714285715, + "acc_stderr,none": 0.0523955794519198, + "alias": "pawsx" + } + }, + "configs": { + "paws_de": { + "task": "paws_de", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_en": { + "task": "paws_en", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_es": { + "task": "paws_es", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_fr": { + "task": "paws_fr", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ja": { + "task": "paws_ja", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ja", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ko": { + "task": "paws_ko", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ko", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_zh": { + "task": "paws_zh", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + } + }, + "versions": { + "paws_de": 0.0, + "paws_en": 0.0, + "paws_es": 0.0, + "paws_fr": 0.0, + "paws_ja": 0.0, + "paws_ko": 0.0, + "paws_zh": 0.0, + "pawsx": "N/A" + }, + "n-shot": { + "paws_de": 0, + "paws_en": 0, + "paws_es": 0, + "paws_fr": 0, + "paws_ja": 0, + "paws_ko": 0, + "paws_zh": 0, + "pawsx": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk4-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk4-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..3ffa08706516965d94128e65903dd05da2b977c9 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:29db3f602b9466d3f905c564f0cc3c1525a9b04361b46f34fbaa11ae27e8e11e +size 45325 diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..543e3a6fb2ec618347e0d15e6185a6a02dae4f8a --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,390 @@ +{ + "results": { + "xcopa": { + "acc,none": 0.6176363636363635, + "acc_stderr,none": 0.07342809337816081, + "alias": "xcopa" + }, + "xcopa_et": { + "acc,none": 0.59, + "acc_stderr,none": 0.022017482578127676, + "alias": " - xcopa_et" + }, + "xcopa_ht": { + "acc,none": 0.514, + "acc_stderr,none": 0.02237429816635318, + "alias": " - xcopa_ht" + }, + "xcopa_id": { + "acc,none": 0.718, + "acc_stderr,none": 0.020143572847290802, + "alias": " - xcopa_id" + }, + "xcopa_it": { + "acc,none": 0.74, + "acc_stderr,none": 0.019635965529725512, + "alias": " - xcopa_it" + }, + "xcopa_qu": { + "acc,none": 0.494, + "acc_stderr,none": 0.022381462412439324, + "alias": " - xcopa_qu" + }, + "xcopa_sw": { + "acc,none": 0.548, + "acc_stderr,none": 0.02227969410784342, + "alias": " - xcopa_sw" + }, + "xcopa_ta": { + "acc,none": 0.574, + "acc_stderr,none": 0.022136577335085637, + "alias": " - xcopa_ta" + }, + "xcopa_th": { + "acc,none": 0.58, + "acc_stderr,none": 0.02209471322976178, + "alias": " - xcopa_th" + }, + "xcopa_tr": { + "acc,none": 0.624, + "acc_stderr,none": 0.02168382753928611, + "alias": " - xcopa_tr" + }, + "xcopa_vi": { + "acc,none": 0.706, + "acc_stderr,none": 0.020395095484936614, + "alias": " - xcopa_vi" + }, + "xcopa_zh": { + "acc,none": 0.706, + "acc_stderr,none": 0.020395095484936603, + "alias": " - xcopa_zh" + } + }, + "groups": { + "xcopa": { + "acc,none": 0.6176363636363635, + "acc_stderr,none": 0.07342809337816081, + "alias": "xcopa" + } + }, + "configs": { + "xcopa_et": { + "task": "xcopa_et", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "et", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'sest', 'effect': 'seetõttu'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ht": { + "task": "xcopa_ht", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ht", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'poukisa', 'effect': 'donk sa'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_id": { + "task": "xcopa_id", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "id", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'karena', 'effect': 'maka'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_it": { + "task": "xcopa_it", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "it", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'perché', 'effect': 'quindi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_qu": { + "task": "xcopa_qu", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "qu", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'imataq', 'effect': 'chaymi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_sw": { + "task": "xcopa_sw", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "sw", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ta": { + "task": "xcopa_ta", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ta", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_th": { + "task": "xcopa_th", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "th", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_tr": { + "task": "xcopa_tr", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "tr", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_vi": { + "task": "xcopa_vi", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "vi", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_zh": { + "task": "xcopa_zh", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "zh", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': '因为', 'effect': '所以'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xcopa": "N/A", + "xcopa_et": 1.0, + "xcopa_ht": 1.0, + "xcopa_id": 1.0, + "xcopa_it": 1.0, + "xcopa_qu": 1.0, + "xcopa_sw": 1.0, + "xcopa_ta": 1.0, + "xcopa_th": 1.0, + "xcopa_tr": 1.0, + "xcopa_vi": 1.0, + "xcopa_zh": 1.0 + }, + "n-shot": { + "xcopa": 0, + "xcopa_et": 0, + "xcopa_ht": 0, + "xcopa_id": 0, + "xcopa_it": 0, + "xcopa_qu": 0, + "xcopa_sw": 0, + "xcopa_ta": 0, + "xcopa_th": 0, + "xcopa_tr": 0, + "xcopa_vi": 0, + "xcopa_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk4-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..ced73fce3c507482b4ddbd7f42b5ca5fe4c4a077 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bd96602a54f51b962f98db1e234367870c8cc92d9222c9e16a39d6517422b3a8 +size 31690 diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..ca196b1835bbcff6d366056e38df7a6d0e67d565 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,548 @@ +{ + "results": { + "xnli": { + "acc,none": 0.4361178045515395, + "acc_stderr,none": 0.049082765135867165, + "alias": "xnli" + }, + "xnli_ar": { + "acc,none": 0.3349397590361446, + "acc_stderr,none": 0.00946022348499647, + "alias": " - xnli_ar" + }, + "xnli_bg": { + "acc,none": 0.45943775100401607, + "acc_stderr,none": 0.009989039874786897, + "alias": " - xnli_bg" + }, + "xnli_de": { + "acc,none": 0.4907630522088353, + "acc_stderr,none": 0.010020362530631355, + "alias": " - xnli_de" + }, + "xnli_el": { + "acc,none": 0.39076305220883534, + "acc_stderr,none": 0.009779967579941791, + "alias": " - xnli_el" + }, + "xnli_en": { + "acc,none": 0.5349397590361445, + "acc_stderr,none": 0.009997573294114558, + "alias": " - xnli_en" + }, + "xnli_es": { + "acc,none": 0.4979919678714859, + "acc_stderr,none": 0.010021992045038411, + "alias": " - xnli_es" + }, + "xnli_fr": { + "acc,none": 0.4979919678714859, + "acc_stderr,none": 0.010021992045038413, + "alias": " - xnli_fr" + }, + "xnli_hi": { + "acc,none": 0.43373493975903615, + "acc_stderr,none": 0.009933667945702083, + "alias": " - xnli_hi" + }, + "xnli_ru": { + "acc,none": 0.4923694779116466, + "acc_stderr,none": 0.010020905731542316, + "alias": " - xnli_ru" + }, + "xnli_sw": { + "acc,none": 0.38313253012048193, + "acc_stderr,none": 0.009744464994287529, + "alias": " - xnli_sw" + }, + "xnli_th": { + "acc,none": 0.41004016064257026, + "acc_stderr,none": 0.00985852571380786, + "alias": " - xnli_th" + }, + "xnli_tr": { + "acc,none": 0.44859437751004017, + "acc_stderr,none": 0.009968964736894258, + "alias": " - xnli_tr" + }, + "xnli_ur": { + "acc,none": 0.40923694779116465, + "acc_stderr,none": 0.009855567414480241, + "alias": " - xnli_ur" + }, + "xnli_vi": { + "acc,none": 0.40803212851405624, + "acc_stderr,none": 0.009851078965044873, + "alias": " - xnli_vi" + }, + "xnli_zh": { + "acc,none": 0.3497991967871486, + "acc_stderr,none": 0.00955918147477829, + "alias": " - xnli_zh" + } + }, + "groups": { + "xnli": { + "acc,none": 0.4361178045515395, + "acc_stderr,none": 0.049082765135867165, + "alias": "xnli" + } + }, + "configs": { + "xnli_ar": { + "task": "xnli_ar", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_bg": { + "task": "xnli_bg", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "bg", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_de": { + "task": "xnli_de", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_el": { + "task": "xnli_el", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "el", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_en": { + "task": "xnli_en", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_es": { + "task": "xnli_es", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_fr": { + "task": "xnli_fr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_hi": { + "task": "xnli_hi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ru": { + "task": "xnli_ru", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_sw": { + "task": "xnli_sw", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_th": { + "task": "xnli_th", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "th", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_tr": { + "task": "xnli_tr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "tr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ur": { + "task": "xnli_ur", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ur", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_vi": { + "task": "xnli_vi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "vi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_zh": { + "task": "xnli_zh", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xnli": "N/A", + "xnli_ar": 1.0, + "xnli_bg": 1.0, + "xnli_de": 1.0, + "xnli_el": 1.0, + "xnli_en": 1.0, + "xnli_es": 1.0, + "xnli_fr": 1.0, + "xnli_hi": 1.0, + "xnli_ru": 1.0, + "xnli_sw": 1.0, + "xnli_th": 1.0, + "xnli_tr": 1.0, + "xnli_ur": 1.0, + "xnli_vi": 1.0, + "xnli_zh": 1.0 + }, + "n-shot": { + "xnli": 0, + "xnli_ar": 0, + "xnli_bg": 0, + "xnli_de": 0, + "xnli_el": 0, + "xnli_en": 0, + "xnli_es": 0, + "xnli_fr": 0, + "xnli_hi": 0, + "xnli_ru": 0, + "xnli_sw": 0, + "xnli_th": 0, + "xnli_tr": 0, + "xnli_ur": 0, + "xnli_vi": 0, + "xnli_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk4-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..7356f65515d209c5f304ca308c55510439a8f6c5 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:443e97712491c66874326c8789c39c5b3e68b40178f69c530ccb18e17cfd43e5 +size 65243 diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..1912e4b6cdc0e60036a67e2afb1296234ee3a032 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,423 @@ +{ + "results": { + "xstorycloze": { + "acc,none": 0.6273389086095903, + "acc_stderr,none": 0.060280339947664276, + "alias": "xstorycloze" + }, + "xstorycloze_ar": { + "acc,none": 0.5936465916611515, + "acc_stderr,none": 0.01263942942038987, + "alias": " - xstorycloze_ar" + }, + "xstorycloze_en": { + "acc,none": 0.771674387822634, + "acc_stderr,none": 0.010802042577302275, + "alias": " - xstorycloze_en" + }, + "xstorycloze_es": { + "acc,none": 0.7107875579086698, + "acc_stderr,none": 0.011667825388305481, + "alias": " - xstorycloze_es" + }, + "xstorycloze_eu": { + "acc,none": 0.5592322964923891, + "acc_stderr,none": 0.012776518586332792, + "alias": " - xstorycloze_eu" + }, + "xstorycloze_hi": { + "acc,none": 0.6015883520847121, + "acc_stderr,none": 0.012598743938252875, + "alias": " - xstorycloze_hi" + }, + "xstorycloze_id": { + "acc,none": 0.6631369953673064, + "acc_stderr,none": 0.012162974996136392, + "alias": " - xstorycloze_id" + }, + "xstorycloze_my": { + "acc,none": 0.5440105890138981, + "acc_stderr,none": 0.012817182901076038, + "alias": " - xstorycloze_my" + }, + "xstorycloze_ru": { + "acc,none": 0.6796823295830576, + "acc_stderr,none": 0.012007565507943376, + "alias": " - xstorycloze_ru" + }, + "xstorycloze_sw": { + "acc,none": 0.5506287227001986, + "acc_stderr,none": 0.01280099159129337, + "alias": " - xstorycloze_sw" + }, + "xstorycloze_te": { + "acc,none": 0.5883520847121112, + "acc_stderr,none": 0.012664648329214084, + "alias": " - xstorycloze_te" + }, + "xstorycloze_zh": { + "acc,none": 0.6379880873593646, + "acc_stderr,none": 0.01236742376945643, + "alias": " - xstorycloze_zh" + } + }, + "groups": { + "xstorycloze": { + "acc,none": 0.6273389086095903, + "acc_stderr,none": 0.060280339947664276, + "alias": "xstorycloze" + } + }, + "configs": { + "xstorycloze_ar": { + "task": "xstorycloze_ar", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_en": { + "task": "xstorycloze_en", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "en", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_es": { + "task": "xstorycloze_es", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "es", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_eu": { + "task": "xstorycloze_eu", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "eu", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_hi": { + "task": "xstorycloze_hi", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_id": { + "task": "xstorycloze_id", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "id", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_my": { + "task": "xstorycloze_my", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "my", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_ru": { + "task": "xstorycloze_ru", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_sw": { + "task": "xstorycloze_sw", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_te": { + "task": "xstorycloze_te", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "te", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_zh": { + "task": "xstorycloze_zh", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xstorycloze": "N/A", + "xstorycloze_ar": 1.0, + "xstorycloze_en": 1.0, + "xstorycloze_es": 1.0, + "xstorycloze_eu": 1.0, + "xstorycloze_hi": 1.0, + "xstorycloze_id": 1.0, + "xstorycloze_my": 1.0, + "xstorycloze_ru": 1.0, + "xstorycloze_sw": 1.0, + "xstorycloze_te": 1.0, + "xstorycloze_zh": 1.0 + }, + "n-shot": { + "xstorycloze": 0, + "xstorycloze_ar": 0, + "xstorycloze_en": 0, + "xstorycloze_es": 0, + "xstorycloze_eu": 0, + "xstorycloze_hi": 0, + "xstorycloze_id": 0, + "xstorycloze_my": 0, + "xstorycloze_ru": 0, + "xstorycloze_sw": 0, + "xstorycloze_te": 0, + "xstorycloze_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk4-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..d87cd3cc1e277643a95f29c33810c8f845c7ee12 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:804af7b9e463db3b6e703d6b8ae7290efb607f10899b7886a36c5cf6e9e59d33 +size 51537 diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..a7bb93c7b737c86fb5d065649ac3e5d469d24fed --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,248 @@ +{ + "results": { + "xwinograd": { + "acc,none": 0.8120926050797932, + "acc_stderr,none": 0.037368969051007804, + "alias": "xwinograd" + }, + "xwinograd_en": { + "acc,none": 0.8683870967741936, + "acc_stderr,none": 0.007012741874121936, + "alias": " - xwinograd_en" + }, + "xwinograd_fr": { + "acc,none": 0.6987951807228916, + "acc_stderr,none": 0.0506639425494172, + "alias": " - xwinograd_fr" + }, + "xwinograd_jp": { + "acc,none": 0.748696558915537, + "acc_stderr,none": 0.01401423454635382, + "alias": " - xwinograd_jp" + }, + "xwinograd_pt": { + "acc,none": 0.7832699619771863, + "acc_stderr,none": 0.0254545042911426, + "alias": " - xwinograd_pt" + }, + "xwinograd_ru": { + "acc,none": 0.6666666666666666, + "acc_stderr,none": 0.026602896148920783, + "alias": " - xwinograd_ru" + }, + "xwinograd_zh": { + "acc,none": 0.7976190476190477, + "acc_stderr,none": 0.0179142480525678, + "alias": " - xwinograd_zh" + } + }, + "groups": { + "xwinograd": { + "acc,none": 0.8120926050797932, + "acc_stderr,none": 0.037368969051007804, + "alias": "xwinograd" + } + }, + "configs": { + "xwinograd_en": { + "task": "xwinograd_en", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_fr": { + "task": "xwinograd_fr", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_jp": { + "task": "xwinograd_jp", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "jp", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_pt": { + "task": "xwinograd_pt", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "pt", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_ru": { + "task": "xwinograd_ru", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "ru", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_zh": { + "task": "xwinograd_zh", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "zh", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xwinograd": "N/A", + "xwinograd_en": 1.0, + "xwinograd_fr": 1.0, + "xwinograd_jp": 1.0, + "xwinograd_pt": 1.0, + "xwinograd_ru": 1.0, + "xwinograd_zh": 1.0 + }, + "n-shot": { + "xwinograd": 0, + "xwinograd_en": 0, + "xwinograd_fr": 0, + "xwinograd_jp": 0, + "xwinograd_pt": 0, + "xwinograd_ru": 0, + "xwinograd_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk4-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk4-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..a0e147b25d9744ec1ba13a25faddb55af04a116a --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk4-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1cb4be97977926b3c47ab8b87efe42d3583390e020cf9f5b4aafeb6d9413e34d +size 20621 diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk6-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..5d99aea6558da8c9e27f5be9c0bba170f4e229e6 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,252 @@ +{ + "results": { + "lambada_multilingual": { + "perplexity,none": 21.89480062230233, + "perplexity_stderr,none": 8.606066325885903, + "acc,none": 0.5307975936347759, + "acc_stderr,none": 0.08644495120983593, + "alias": "lambada_multilingual" + }, + "lambada_openai_mt_de": { + "perplexity,none": 36.34018721258354, + "perplexity_stderr,none": 1.9967126585623305, + "acc,none": 0.4139336308946245, + "acc_stderr,none": 0.006862001830409195, + "alias": " - lambada_openai_mt_de" + }, + "lambada_openai_mt_en": { + "perplexity,none": 3.4081862621348447, + "perplexity_stderr,none": 0.06716807356087344, + "acc,none": 0.740151368135067, + "acc_stderr,none": 0.006109878348081186, + "alias": " - lambada_openai_mt_en" + }, + "lambada_openai_mt_es": { + "perplexity,none": 29.348252910749245, + "perplexity_stderr,none": 1.433072227613605, + "acc,none": 0.45002910925674366, + "acc_stderr,none": 0.006931101003281441, + "alias": " - lambada_openai_mt_es" + }, + "lambada_openai_mt_fr": { + "perplexity,none": 17.245009981091364, + "perplexity_stderr,none": 0.8328223978366426, + "acc,none": 0.5453134096642732, + "acc_stderr,none": 0.006937312121911722, + "alias": " - lambada_openai_mt_fr" + }, + "lambada_openai_mt_it": { + "perplexity,none": 23.13236674495265, + "perplexity_stderr,none": 1.2201336908132996, + "acc,none": 0.504560450223171, + "acc_stderr,none": 0.006965687898451475, + "alias": " - lambada_openai_mt_it" + } + }, + "groups": { + "lambada_multilingual": { + "perplexity,none": 21.89480062230233, + "perplexity_stderr,none": 8.606066325885903, + "acc,none": 0.5307975936347759, + "acc_stderr,none": 0.08644495120983593, + "alias": "lambada_multilingual" + } + }, + "configs": { + "lambada_openai_mt_de": { + "task": "lambada_openai_mt_de", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "de", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_en": { + "task": "lambada_openai_mt_en", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_es": { + "task": "lambada_openai_mt_es", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "es", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_fr": { + "task": "lambada_openai_mt_fr", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_it": { + "task": "lambada_openai_mt_it", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "it", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "lambada_multilingual": "N/A", + "lambada_openai_mt_de": 1.0, + "lambada_openai_mt_en": 1.0, + "lambada_openai_mt_es": 1.0, + "lambada_openai_mt_fr": 1.0, + "lambada_openai_mt_it": 1.0 + }, + "n-shot": { + "lambada_multilingual": 0, + "lambada_openai_mt_de": 0, + "lambada_openai_mt_en": 0, + "lambada_openai_mt_es": 0, + "lambada_openai_mt_fr": 0, + "lambada_openai_mt_it": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk6-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk6-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..40bde6b9608dd3ca33bd5d9fc42b67d47f8621e7 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7902dd65653a017eb1b43168d485a9cffd42b3d2b8559d992765109d39717016 +size 37770 diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk6-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..4a8b7f4eaaa317235efc5b7bbee7949580a67678 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,283 @@ +{ + "results": { + "pawsx": { + "acc,none": 0.48014285714285715, + "acc_stderr,none": 0.05534012226753693, + "alias": "pawsx" + }, + "paws_de": { + "acc,none": 0.432, + "acc_stderr,none": 0.011079231683079104, + "alias": " - paws_de" + }, + "paws_en": { + "acc,none": 0.379, + "acc_stderr,none": 0.010850731274185836, + "alias": " - paws_en" + }, + "paws_es": { + "acc,none": 0.408, + "acc_stderr,none": 0.010992197878818588, + "alias": " - paws_es" + }, + "paws_fr": { + "acc,none": 0.5475, + "acc_stderr,none": 0.011132557743886095, + "alias": " - paws_fr" + }, + "paws_ja": { + "acc,none": 0.55, + "acc_stderr,none": 0.01112707984841374, + "alias": " - paws_ja" + }, + "paws_ko": { + "acc,none": 0.5235, + "acc_stderr,none": 0.011170777418517842, + "alias": " - paws_ko" + }, + "paws_zh": { + "acc,none": 0.521, + "acc_stderr,none": 0.011173268141438297, + "alias": " - paws_zh" + } + }, + "groups": { + "pawsx": { + "acc,none": 0.48014285714285715, + "acc_stderr,none": 0.05534012226753693, + "alias": "pawsx" + } + }, + "configs": { + "paws_de": { + "task": "paws_de", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_en": { + "task": "paws_en", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_es": { + "task": "paws_es", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_fr": { + "task": "paws_fr", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ja": { + "task": "paws_ja", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ja", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ko": { + "task": "paws_ko", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ko", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_zh": { + "task": "paws_zh", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + } + }, + "versions": { + "paws_de": 0.0, + "paws_en": 0.0, + "paws_es": 0.0, + "paws_fr": 0.0, + "paws_ja": 0.0, + "paws_ko": 0.0, + "paws_zh": 0.0, + "pawsx": "N/A" + }, + "n-shot": { + "paws_de": 0, + "paws_en": 0, + "paws_es": 0, + "paws_fr": 0, + "paws_ja": 0, + "paws_ko": 0, + "paws_zh": 0, + "pawsx": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk6-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk6-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..76404c2da2f89686ed8fcd40e1b74036cc6a5932 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:64c3608f86b59babd37822be4fb25f5fd11f0331c60abbf60d065b3b7f82a922 +size 35790 diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..b88481241ea8c5e049ab782b547e779a2c7b3e74 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,390 @@ +{ + "results": { + "xcopa": { + "acc,none": 0.6194545454545455, + "acc_stderr,none": 0.06991846917423968, + "alias": "xcopa" + }, + "xcopa_et": { + "acc,none": 0.596, + "acc_stderr,none": 0.02196663529383292, + "alias": " - xcopa_et" + }, + "xcopa_ht": { + "acc,none": 0.518, + "acc_stderr,none": 0.02236856511738799, + "alias": " - xcopa_ht" + }, + "xcopa_id": { + "acc,none": 0.714, + "acc_stderr,none": 0.020229346329177517, + "alias": " - xcopa_id" + }, + "xcopa_it": { + "acc,none": 0.74, + "acc_stderr,none": 0.019635965529725512, + "alias": " - xcopa_it" + }, + "xcopa_qu": { + "acc,none": 0.51, + "acc_stderr,none": 0.02237859698923078, + "alias": " - xcopa_qu" + }, + "xcopa_sw": { + "acc,none": 0.544, + "acc_stderr,none": 0.022296238348407056, + "alias": " - xcopa_sw" + }, + "xcopa_ta": { + "acc,none": 0.586, + "acc_stderr,none": 0.02204949796982787, + "alias": " - xcopa_ta" + }, + "xcopa_th": { + "acc,none": 0.58, + "acc_stderr,none": 0.02209471322976178, + "alias": " - xcopa_th" + }, + "xcopa_tr": { + "acc,none": 0.626, + "acc_stderr,none": 0.021660710347204487, + "alias": " - xcopa_tr" + }, + "xcopa_vi": { + "acc,none": 0.702, + "acc_stderr,none": 0.020475118092988964, + "alias": " - xcopa_vi" + }, + "xcopa_zh": { + "acc,none": 0.698, + "acc_stderr,none": 0.020553269174209188, + "alias": " - xcopa_zh" + } + }, + "groups": { + "xcopa": { + "acc,none": 0.6194545454545455, + "acc_stderr,none": 0.06991846917423968, + "alias": "xcopa" + } + }, + "configs": { + "xcopa_et": { + "task": "xcopa_et", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "et", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'sest', 'effect': 'seetõttu'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ht": { + "task": "xcopa_ht", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ht", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'poukisa', 'effect': 'donk sa'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_id": { + "task": "xcopa_id", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "id", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'karena', 'effect': 'maka'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_it": { + "task": "xcopa_it", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "it", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'perché', 'effect': 'quindi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_qu": { + "task": "xcopa_qu", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "qu", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'imataq', 'effect': 'chaymi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_sw": { + "task": "xcopa_sw", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "sw", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ta": { + "task": "xcopa_ta", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ta", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_th": { + "task": "xcopa_th", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "th", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_tr": { + "task": "xcopa_tr", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "tr", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_vi": { + "task": "xcopa_vi", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "vi", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_zh": { + "task": "xcopa_zh", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "zh", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': '因为', 'effect': '所以'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xcopa": "N/A", + "xcopa_et": 1.0, + "xcopa_ht": 1.0, + "xcopa_id": 1.0, + "xcopa_it": 1.0, + "xcopa_qu": 1.0, + "xcopa_sw": 1.0, + "xcopa_ta": 1.0, + "xcopa_th": 1.0, + "xcopa_tr": 1.0, + "xcopa_vi": 1.0, + "xcopa_zh": 1.0 + }, + "n-shot": { + "xcopa": 0, + "xcopa_et": 0, + "xcopa_ht": 0, + "xcopa_id": 0, + "xcopa_it": 0, + "xcopa_qu": 0, + "xcopa_sw": 0, + "xcopa_ta": 0, + "xcopa_th": 0, + "xcopa_tr": 0, + "xcopa_vi": 0, + "xcopa_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk6-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..e8e0c79437bd7b24cf9cad1fbfde69767cf59e15 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5275f1f605166d646c360466e28711938896c16b7c5eb87accd745e763905aa0 +size 31821 diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..76290a1d17bd3313885601fa295727e98bfd9635 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,548 @@ +{ + "results": { + "xnli": { + "acc,none": 0.4344042838018742, + "acc_stderr,none": 0.05469504812660941, + "alias": "xnli" + }, + "xnli_ar": { + "acc,none": 0.336144578313253, + "acc_stderr,none": 0.00946863466929353, + "alias": " - xnli_ar" + }, + "xnli_bg": { + "acc,none": 0.4738955823293173, + "acc_stderr,none": 0.010008404651660677, + "alias": " - xnli_bg" + }, + "xnli_de": { + "acc,none": 0.4875502008032129, + "acc_stderr,none": 0.010018965593055396, + "alias": " - xnli_de" + }, + "xnli_el": { + "acc,none": 0.3859437751004016, + "acc_stderr,none": 0.00975783884206334, + "alias": " - xnli_el" + }, + "xnli_en": { + "acc,none": 0.536144578313253, + "acc_stderr,none": 0.00999585228282235, + "alias": " - xnli_en" + }, + "xnli_es": { + "acc,none": 0.5020080321285141, + "acc_stderr,none": 0.010021992045038411, + "alias": " - xnli_es" + }, + "xnli_fr": { + "acc,none": 0.5108433734939759, + "acc_stderr,none": 0.01001971582448347, + "alias": " - xnli_fr" + }, + "xnli_hi": { + "acc,none": 0.42570281124497994, + "acc_stderr,none": 0.009910810127822826, + "alias": " - xnli_hi" + }, + "xnli_ru": { + "acc,none": 0.4899598393574297, + "acc_stderr,none": 0.010020052116889139, + "alias": " - xnli_ru" + }, + "xnli_sw": { + "acc,none": 0.38393574297188754, + "acc_stderr,none": 0.009748321202534391, + "alias": " - xnli_sw" + }, + "xnli_th": { + "acc,none": 0.39799196787148594, + "acc_stderr,none": 0.00981128402642558, + "alias": " - xnli_th" + }, + "xnli_tr": { + "acc,none": 0.4530120481927711, + "acc_stderr,none": 0.00997771990435374, + "alias": " - xnli_tr" + }, + "xnli_ur": { + "acc,none": 0.39518072289156625, + "acc_stderr,none": 0.009799371892746728, + "alias": " - xnli_ur" + }, + "xnli_vi": { + "acc,none": 0.38353413654618473, + "acc_stderr,none": 0.009746396613443772, + "alias": " - xnli_vi" + }, + "xnli_zh": { + "acc,none": 0.3542168674698795, + "acc_stderr,none": 0.009586620142951844, + "alias": " - xnli_zh" + } + }, + "groups": { + "xnli": { + "acc,none": 0.4344042838018742, + "acc_stderr,none": 0.05469504812660941, + "alias": "xnli" + } + }, + "configs": { + "xnli_ar": { + "task": "xnli_ar", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_bg": { + "task": "xnli_bg", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "bg", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_de": { + "task": "xnli_de", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_el": { + "task": "xnli_el", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "el", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_en": { + "task": "xnli_en", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_es": { + "task": "xnli_es", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_fr": { + "task": "xnli_fr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_hi": { + "task": "xnli_hi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ru": { + "task": "xnli_ru", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_sw": { + "task": "xnli_sw", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_th": { + "task": "xnli_th", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "th", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_tr": { + "task": "xnli_tr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "tr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ur": { + "task": "xnli_ur", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ur", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_vi": { + "task": "xnli_vi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "vi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_zh": { + "task": "xnli_zh", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xnli": "N/A", + "xnli_ar": 1.0, + "xnli_bg": 1.0, + "xnli_de": 1.0, + "xnli_el": 1.0, + "xnli_en": 1.0, + "xnli_es": 1.0, + "xnli_fr": 1.0, + "xnli_hi": 1.0, + "xnli_ru": 1.0, + "xnli_sw": 1.0, + "xnli_th": 1.0, + "xnli_tr": 1.0, + "xnli_ur": 1.0, + "xnli_vi": 1.0, + "xnli_zh": 1.0 + }, + "n-shot": { + "xnli": 0, + "xnli_ar": 0, + "xnli_bg": 0, + "xnli_de": 0, + "xnli_el": 0, + "xnli_en": 0, + "xnli_es": 0, + "xnli_fr": 0, + "xnli_hi": 0, + "xnli_ru": 0, + "xnli_sw": 0, + "xnli_th": 0, + "xnli_tr": 0, + "xnli_ur": 0, + "xnli_vi": 0, + "xnli_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk6-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..b018895a72c52eb890875cca38ee063f62161040 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f88c41535eef1a5d49c1792a487a84b7db645b17e65a8f4de93d1775531794ac +size 162675 diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..a8da620d1303f0a1a43a4c42bc01a54c425f63b7 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,423 @@ +{ + "results": { + "xstorycloze": { + "acc,none": 0.6231875338427291, + "acc_stderr,none": 0.06430301093145158, + "alias": "xstorycloze" + }, + "xstorycloze_ar": { + "acc,none": 0.5830575777630708, + "acc_stderr,none": 0.012688354121607806, + "alias": " - xstorycloze_ar" + }, + "xstorycloze_en": { + "acc,none": 0.7809397749834547, + "acc_stderr,none": 0.010643931294349712, + "alias": " - xstorycloze_en" + }, + "xstorycloze_es": { + "acc,none": 0.7074784910655195, + "acc_stderr,none": 0.011707038572975023, + "alias": " - xstorycloze_es" + }, + "xstorycloze_eu": { + "acc,none": 0.5579086697551291, + "acc_stderr,none": 0.012780536370279769, + "alias": " - xstorycloze_eu" + }, + "xstorycloze_hi": { + "acc,none": 0.5976174718729318, + "acc_stderr,none": 0.01261951681952871, + "alias": " - xstorycloze_hi" + }, + "xstorycloze_id": { + "acc,none": 0.6578424884182661, + "acc_stderr,none": 0.012209152707472828, + "alias": " - xstorycloze_id" + }, + "xstorycloze_my": { + "acc,none": 0.5188616810059563, + "acc_stderr,none": 0.01285796676246499, + "alias": " - xstorycloze_my" + }, + "xstorycloze_ru": { + "acc,none": 0.6750496360026472, + "acc_stderr,none": 0.012052798442200212, + "alias": " - xstorycloze_ru" + }, + "xstorycloze_sw": { + "acc,none": 0.5512905360688286, + "acc_stderr,none": 0.01279924669010975, + "alias": " - xstorycloze_sw" + }, + "xstorycloze_te": { + "acc,none": 0.587028457974851, + "acc_stderr,none": 0.012670716290966721, + "alias": " - xstorycloze_te" + }, + "xstorycloze_zh": { + "acc,none": 0.6379880873593646, + "acc_stderr,none": 0.01236742376945643, + "alias": " - xstorycloze_zh" + } + }, + "groups": { + "xstorycloze": { + "acc,none": 0.6231875338427291, + "acc_stderr,none": 0.06430301093145158, + "alias": "xstorycloze" + } + }, + "configs": { + "xstorycloze_ar": { + "task": "xstorycloze_ar", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_en": { + "task": "xstorycloze_en", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "en", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_es": { + "task": "xstorycloze_es", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "es", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_eu": { + "task": "xstorycloze_eu", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "eu", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_hi": { + "task": "xstorycloze_hi", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_id": { + "task": "xstorycloze_id", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "id", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_my": { + "task": "xstorycloze_my", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "my", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_ru": { + "task": "xstorycloze_ru", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_sw": { + "task": "xstorycloze_sw", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_te": { + "task": "xstorycloze_te", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "te", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_zh": { + "task": "xstorycloze_zh", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xstorycloze": "N/A", + "xstorycloze_ar": 1.0, + "xstorycloze_en": 1.0, + "xstorycloze_es": 1.0, + "xstorycloze_eu": 1.0, + "xstorycloze_hi": 1.0, + "xstorycloze_id": 1.0, + "xstorycloze_my": 1.0, + "xstorycloze_ru": 1.0, + "xstorycloze_sw": 1.0, + "xstorycloze_te": 1.0, + "xstorycloze_zh": 1.0 + }, + "n-shot": { + "xstorycloze": 0, + "xstorycloze_ar": 0, + "xstorycloze_en": 0, + "xstorycloze_es": 0, + "xstorycloze_eu": 0, + "xstorycloze_hi": 0, + "xstorycloze_id": 0, + "xstorycloze_my": 0, + "xstorycloze_ru": 0, + "xstorycloze_sw": 0, + "xstorycloze_te": 0, + "xstorycloze_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk6-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..e70ccbffec05cbd925a3813fa371af385d06477a --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:45d91a6cf29477db207533dc6eb89df99330fa2199d3c34018f6cd649e4d6e8b +size 51550 diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..37b2ae62153f6fee06437f8d92b9da53579cfe9b --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,248 @@ +{ + "results": { + "xwinograd": { + "acc,none": 0.8114182962463475, + "acc_stderr,none": 0.035834029010772546, + "alias": "xwinograd" + }, + "xwinograd_en": { + "acc,none": 0.8679569892473118, + "acc_stderr,none": 0.007022451518434577, + "alias": " - xwinograd_en" + }, + "xwinograd_fr": { + "acc,none": 0.7349397590361446, + "acc_stderr,none": 0.04874064133109369, + "alias": " - xwinograd_fr" + }, + "xwinograd_jp": { + "acc,none": 0.7434827945776851, + "acc_stderr,none": 0.014109478326566515, + "alias": " - xwinograd_jp" + }, + "xwinograd_pt": { + "acc,none": 0.7908745247148289, + "acc_stderr,none": 0.025125031682933358, + "alias": " - xwinograd_pt" + }, + "xwinograd_ru": { + "acc,none": 0.6793650793650794, + "acc_stderr,none": 0.02633857021981405, + "alias": " - xwinograd_ru" + }, + "xwinograd_zh": { + "acc,none": 0.7857142857142857, + "acc_stderr,none": 0.01829552775577619, + "alias": " - xwinograd_zh" + } + }, + "groups": { + "xwinograd": { + "acc,none": 0.8114182962463475, + "acc_stderr,none": 0.035834029010772546, + "alias": "xwinograd" + } + }, + "configs": { + "xwinograd_en": { + "task": "xwinograd_en", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_fr": { + "task": "xwinograd_fr", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_jp": { + "task": "xwinograd_jp", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "jp", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_pt": { + "task": "xwinograd_pt", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "pt", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_ru": { + "task": "xwinograd_ru", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "ru", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_zh": { + "task": "xwinograd_zh", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "zh", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xwinograd": "N/A", + "xwinograd_en": 1.0, + "xwinograd_fr": 1.0, + "xwinograd_jp": 1.0, + "xwinograd_pt": 1.0, + "xwinograd_ru": 1.0, + "xwinograd_zh": 1.0 + }, + "n-shot": { + "xwinograd": 0, + "xwinograd_en": 0, + "xwinograd_fr": 0, + "xwinograd_jp": 0, + "xwinograd_pt": 0, + "xwinograd_ru": 0, + "xwinograd_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk6-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk6-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..644e4fb5244d50a8ccdd9295b4e600773117f7c5 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk6-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2e92736790b49f401945ac5bab5bc8ea11b913186fc7cfdb57f56572a866e7bf +size 18461 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..17567e794a62e472e3bb77a23a1d3f7ba3ca31ef --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,161 @@ +{ + "results": { + "anli": { + "acc,none": 0.3503125, + "acc_stderr,none": 0.014911472302215742, + "alias": "anli" + }, + "anli_r1": { + "acc,none": 0.347, + "acc_stderr,none": 0.015060472031706615, + "alias": " - anli_r1" + }, + "anli_r2": { + "acc,none": 0.358, + "acc_stderr,none": 0.01516792886540756, + "alias": " - anli_r2" + }, + "anli_r3": { + "acc,none": 0.3466666666666667, + "acc_stderr,none": 0.01374402255057195, + "alias": " - anli_r3" + } + }, + "groups": { + "anli": { + "acc,none": 0.3503125, + "acc_stderr,none": 0.014911472302215742, + "alias": "anli" + } + }, + "configs": { + "anli_r1": { + "task": "anli_r1", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r1", + "validation_split": "dev_r1", + "test_split": "test_r1", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r2": { + "task": "anli_r2", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r2", + "validation_split": "dev_r2", + "test_split": "test_r2", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + }, + "anli_r3": { + "task": "anli_r3", + "group": [ + "anli" + ], + "dataset_path": "anli", + "training_split": "train_r3", + "validation_split": "dev_r3", + "test_split": "test_r3", + "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", + "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", + "doc_to_choice": [ + "True", + "Neither", + "False" + ], + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "premise", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "anli": "N/A", + "anli_r1": 1.0, + "anli_r2": 1.0, + "anli_r3": 1.0 + }, + "n-shot": { + "anli": 0, + "anli_r1": 0, + "anli_r2": 0, + "anli_r3": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "f7ea5c5" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..4113cd09b2cdca3c2bcd61a6d74f3f89d3e98ff9 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0008bac641b3236ae1630103ff73b557ca8e22ab1fb595332f58f92713475b8d +size 16322 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..0743b307da823900ec25f4277069666911ee1c85 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,252 @@ +{ + "results": { + "lambada_multilingual": { + "perplexity,none": 21.686663532352995, + "perplexity_stderr,none": 8.551138802957178, + "acc,none": 0.5311857170580244, + "acc_stderr,none": 0.08657942116269626, + "alias": "lambada_multilingual" + }, + "lambada_openai_mt_de": { + "perplexity,none": 36.16374168280647, + "perplexity_stderr,none": 1.9802456223537463, + "acc,none": 0.4137395691830002, + "acc_stderr,none": 0.006861528841487096, + "alias": " - lambada_openai_mt_de" + }, + "lambada_openai_mt_en": { + "perplexity,none": 3.408604041764526, + "perplexity_stderr,none": 0.06718092195575899, + "acc,none": 0.7409276149815641, + "acc_stderr,none": 0.00610394378449244, + "alias": " - lambada_openai_mt_en" + }, + "lambada_openai_mt_es": { + "perplexity,none": 29.041958473961213, + "perplexity_stderr,none": 1.4171288083282478, + "acc,none": 0.4519697263729866, + "acc_stderr,none": 0.006933763441941935, + "alias": " - lambada_openai_mt_es" + }, + "lambada_openai_mt_fr": { + "perplexity,none": 17.081975588945642, + "perplexity_stderr,none": 0.824796537623172, + "acc,none": 0.5468659033572676, + "acc_stderr,none": 0.00693530982302354, + "alias": " - lambada_openai_mt_fr" + }, + "lambada_openai_mt_it": { + "perplexity,none": 22.73703787428714, + "perplexity_stderr,none": 1.2020896315116134, + "acc,none": 0.5024257713953038, + "acc_stderr,none": 0.006965895675973331, + "alias": " - lambada_openai_mt_it" + } + }, + "groups": { + "lambada_multilingual": { + "perplexity,none": 21.686663532352995, + "perplexity_stderr,none": 8.551138802957178, + "acc,none": 0.5311857170580244, + "acc_stderr,none": 0.08657942116269626, + "alias": "lambada_multilingual" + } + }, + "configs": { + "lambada_openai_mt_de": { + "task": "lambada_openai_mt_de", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "de", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_en": { + "task": "lambada_openai_mt_en", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_es": { + "task": "lambada_openai_mt_es", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "es", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_fr": { + "task": "lambada_openai_mt_fr", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + }, + "lambada_openai_mt_it": { + "task": "lambada_openai_mt_it", + "group": [ + "lambada_multilingual" + ], + "dataset_path": "EleutherAI/lambada_openai", + "dataset_name": "it", + "test_split": "test", + "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}", + "doc_to_target": "{{' '+text.split(' ')[-1]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "perplexity", + "aggregation": "perplexity", + "higher_is_better": false + }, + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "loglikelihood", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{text}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "lambada_multilingual": "N/A", + "lambada_openai_mt_de": 1.0, + "lambada_openai_mt_en": 1.0, + "lambada_openai_mt_es": 1.0, + "lambada_openai_mt_fr": 1.0, + "lambada_openai_mt_it": 1.0 + }, + "n-shot": { + "lambada_multilingual": 0, + "lambada_openai_mt_de": 0, + "lambada_openai_mt_en": 0, + "lambada_openai_mt_es": 0, + "lambada_openai_mt_fr": 0, + "lambada_openai_mt_it": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..7d67e3bf426d7a73bc42ff4591c92a9a5ac18552 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fed2435f3cc0180bffc4ba410c8922ec595439da8f67ae2b905953e93b9f8de6 +size 40956 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..7c83b2a160a4b0a441a023cd91f44356495a0c3e --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,283 @@ +{ + "results": { + "pawsx": { + "acc,none": 0.47935714285714287, + "acc_stderr,none": 0.05312845653003483, + "alias": "pawsx" + }, + "paws_de": { + "acc,none": 0.4275, + "acc_stderr,none": 0.011064948781886606, + "alias": " - paws_de" + }, + "paws_en": { + "acc,none": 0.3895, + "acc_stderr,none": 0.010906619649373086, + "alias": " - paws_en" + }, + "paws_es": { + "acc,none": 0.4075, + "acc_stderr,none": 0.010990098549743105, + "alias": " - paws_es" + }, + "paws_fr": { + "acc,none": 0.5465, + "acc_stderr,none": 0.01113466952507867, + "alias": " - paws_fr" + }, + "paws_ja": { + "acc,none": 0.5505, + "acc_stderr,none": 0.011125950223877364, + "alias": " - paws_ja" + }, + "paws_ko": { + "acc,none": 0.5155, + "acc_stderr,none": 0.011177761232603322, + "alias": " - paws_ko" + }, + "paws_zh": { + "acc,none": 0.5185, + "acc_stderr,none": 0.011175478542788577, + "alias": " - paws_zh" + } + }, + "groups": { + "pawsx": { + "acc,none": 0.47935714285714287, + "acc_stderr,none": 0.05312845653003483, + "alias": "pawsx" + } + }, + "configs": { + "paws_de": { + "task": "paws_de", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_en": { + "task": "paws_en", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_es": { + "task": "paws_es", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_fr": { + "task": "paws_fr", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ja": { + "task": "paws_ja", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ja", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_ko": { + "task": "paws_ko", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "ko", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + }, + "paws_zh": { + "task": "paws_zh", + "group": "pawsx", + "dataset_path": "paws-x", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 0.0 + } + } + }, + "versions": { + "paws_de": 0.0, + "paws_en": 0.0, + "paws_es": 0.0, + "paws_fr": 0.0, + "paws_ja": 0.0, + "paws_ko": 0.0, + "paws_zh": 0.0, + "pawsx": "N/A" + }, + "n-shot": { + "paws_de": 0, + "paws_en": 0, + "paws_es": 0, + "paws_fr": 0, + "paws_ja": 0, + "paws_ko": 0, + "paws_zh": 0, + "pawsx": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..b4baade084ab5e3ed086feaaba48119e189da858 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4939a44fdde32f57397e6ab2f0709fd25f50ebee137c9905f3d9aa70005a569b +size 35792 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..a393d06a79a93b8124947c898a0acf7a5413a62a --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,390 @@ +{ + "results": { + "xcopa": { + "acc,none": 0.618181818181818, + "acc_stderr,none": 0.06875858967936962, + "alias": "xcopa" + }, + "xcopa_et": { + "acc,none": 0.606, + "acc_stderr,none": 0.021874299301689253, + "alias": " - xcopa_et" + }, + "xcopa_ht": { + "acc,none": 0.526, + "acc_stderr,none": 0.022352791650914156, + "alias": " - xcopa_ht" + }, + "xcopa_id": { + "acc,none": 0.716, + "acc_stderr,none": 0.02018670369357086, + "alias": " - xcopa_id" + }, + "xcopa_it": { + "acc,none": 0.73, + "acc_stderr,none": 0.01987435483128748, + "alias": " - xcopa_it" + }, + "xcopa_qu": { + "acc,none": 0.5, + "acc_stderr,none": 0.022383074051792257, + "alias": " - xcopa_qu" + }, + "xcopa_sw": { + "acc,none": 0.538, + "acc_stderr,none": 0.022318338119870523, + "alias": " - xcopa_sw" + }, + "xcopa_ta": { + "acc,none": 0.586, + "acc_stderr,none": 0.02204949796982787, + "alias": " - xcopa_ta" + }, + "xcopa_th": { + "acc,none": 0.582, + "acc_stderr,none": 0.022080014812228137, + "alias": " - xcopa_th" + }, + "xcopa_tr": { + "acc,none": 0.628, + "acc_stderr,none": 0.0216371979857224, + "alias": " - xcopa_tr" + }, + "xcopa_vi": { + "acc,none": 0.688, + "acc_stderr,none": 0.02074059653648808, + "alias": " - xcopa_vi" + }, + "xcopa_zh": { + "acc,none": 0.7, + "acc_stderr,none": 0.020514426225628053, + "alias": " - xcopa_zh" + } + }, + "groups": { + "xcopa": { + "acc,none": 0.618181818181818, + "acc_stderr,none": 0.06875858967936962, + "alias": "xcopa" + } + }, + "configs": { + "xcopa_et": { + "task": "xcopa_et", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "et", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'sest', 'effect': 'seetõttu'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ht": { + "task": "xcopa_ht", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ht", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'poukisa', 'effect': 'donk sa'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_id": { + "task": "xcopa_id", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "id", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'karena', 'effect': 'maka'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_it": { + "task": "xcopa_it", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "it", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'perché', 'effect': 'quindi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_qu": { + "task": "xcopa_qu", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "qu", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'imataq', 'effect': 'chaymi'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_sw": { + "task": "xcopa_sw", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "sw", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_ta": { + "task": "xcopa_ta", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "ta", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_th": { + "task": "xcopa_th", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "th", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_tr": { + "task": "xcopa_tr", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "tr", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_vi": { + "task": "xcopa_vi", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "vi", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xcopa_zh": { + "task": "xcopa_zh", + "group": "xcopa", + "dataset_path": "xcopa", + "dataset_name": "zh", + "validation_split": "validation", + "test_split": "test", + "doc_to_text": "functools.partial(, connector={'cause': '因为', 'effect': '所以'})", + "doc_to_target": "label", + "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc" + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xcopa": "N/A", + "xcopa_et": 1.0, + "xcopa_ht": 1.0, + "xcopa_id": 1.0, + "xcopa_it": 1.0, + "xcopa_qu": 1.0, + "xcopa_sw": 1.0, + "xcopa_ta": 1.0, + "xcopa_th": 1.0, + "xcopa_tr": 1.0, + "xcopa_vi": 1.0, + "xcopa_zh": 1.0 + }, + "n-shot": { + "xcopa": 0, + "xcopa_et": 0, + "xcopa_ht": 0, + "xcopa_id": 0, + "xcopa_it": 0, + "xcopa_qu": 0, + "xcopa_sw": 0, + "xcopa_ta": 0, + "xcopa_th": 0, + "xcopa_tr": 0, + "xcopa_vi": 0, + "xcopa_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..1ecd6fdaef03731077f53bbb2ac89ce84ec556e0 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:07883ae6fd4c87e90da9eb997611238e8bc718351917e83cd2372694027118ba +size 22394 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..6433a85e0b0b2a0984fbcfda922050e3b5c6a961 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,548 @@ +{ + "results": { + "xnli": { + "acc,none": 0.4334136546184739, + "acc_stderr,none": 0.053977219180730326, + "alias": "xnli" + }, + "xnli_ar": { + "acc,none": 0.336144578313253, + "acc_stderr,none": 0.00946863466929353, + "alias": " - xnli_ar" + }, + "xnli_bg": { + "acc,none": 0.4674698795180723, + "acc_stderr,none": 0.010000839483876032, + "alias": " - xnli_bg" + }, + "xnli_de": { + "acc,none": 0.4879518072289157, + "acc_stderr,none": 0.010019162857624492, + "alias": " - xnli_de" + }, + "xnli_el": { + "acc,none": 0.3855421686746988, + "acc_stderr,none": 0.00975594934122432, + "alias": " - xnli_el" + }, + "xnli_en": { + "acc,none": 0.5349397590361445, + "acc_stderr,none": 0.009997573294114558, + "alias": " - xnli_en" + }, + "xnli_es": { + "acc,none": 0.5012048192771085, + "acc_stderr,none": 0.01002204377131558, + "alias": " - xnli_es" + }, + "xnli_fr": { + "acc,none": 0.5088353413654618, + "acc_stderr,none": 0.010020508033762626, + "alias": " - xnli_fr" + }, + "xnli_hi": { + "acc,none": 0.41646586345381525, + "acc_stderr,none": 0.009881215932115989, + "alias": " - xnli_hi" + }, + "xnli_ru": { + "acc,none": 0.4887550200803213, + "acc_stderr,none": 0.01001953797297508, + "alias": " - xnli_ru" + }, + "xnli_sw": { + "acc,none": 0.3751004016064257, + "acc_stderr,none": 0.009704349720814057, + "alias": " - xnli_sw" + }, + "xnli_th": { + "acc,none": 0.40682730923694777, + "acc_stderr,none": 0.00984652924059887, + "alias": " - xnli_th" + }, + "xnli_tr": { + "acc,none": 0.4497991967871486, + "acc_stderr,none": 0.009971431255560166, + "alias": " - xnli_tr" + }, + "xnli_ur": { + "acc,none": 0.3891566265060241, + "acc_stderr,none": 0.009772702993836013, + "alias": " - xnli_ur" + }, + "xnli_vi": { + "acc,none": 0.40160642570281124, + "acc_stderr,none": 0.009826103601507128, + "alias": " - xnli_vi" + }, + "xnli_zh": { + "acc,none": 0.3514056224899598, + "acc_stderr,none": 0.009569263079823967, + "alias": " - xnli_zh" + } + }, + "groups": { + "xnli": { + "acc,none": 0.4334136546184739, + "acc_stderr,none": 0.053977219180730326, + "alias": "xnli" + } + }, + "configs": { + "xnli_ar": { + "task": "xnli_ar", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_bg": { + "task": "xnli_bg", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "bg", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_de": { + "task": "xnli_de", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "de", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_el": { + "task": "xnli_el", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "el", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_en": { + "task": "xnli_en", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "en", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_es": { + "task": "xnli_es", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "es", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_fr": { + "task": "xnli_fr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "fr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_hi": { + "task": "xnli_hi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ru": { + "task": "xnli_ru", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_sw": { + "task": "xnli_sw", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_th": { + "task": "xnli_th", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "th", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_tr": { + "task": "xnli_tr", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "tr", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_ur": { + "task": "xnli_ur", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "ur", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_vi": { + "task": "xnli_vi", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "vi", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xnli_zh": { + "task": "xnli_zh", + "group": "xnli", + "dataset_path": "xnli", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "validation", + "doc_to_text": "", + "doc_to_target": "label", + "doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xnli": "N/A", + "xnli_ar": 1.0, + "xnli_bg": 1.0, + "xnli_de": 1.0, + "xnli_el": 1.0, + "xnli_en": 1.0, + "xnli_es": 1.0, + "xnli_fr": 1.0, + "xnli_hi": 1.0, + "xnli_ru": 1.0, + "xnli_sw": 1.0, + "xnli_th": 1.0, + "xnli_tr": 1.0, + "xnli_ur": 1.0, + "xnli_vi": 1.0, + "xnli_zh": 1.0 + }, + "n-shot": { + "xnli": 0, + "xnli_ar": 0, + "xnli_bg": 0, + "xnli_de": 0, + "xnli_el": 0, + "xnli_en": 0, + "xnli_es": 0, + "xnli_fr": 0, + "xnli_hi": 0, + "xnli_ru": 0, + "xnli_sw": 0, + "xnli_th": 0, + "xnli_tr": 0, + "xnli_ur": 0, + "xnli_vi": 0, + "xnli_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..38438f744ddb8a59f881d368bbffc69b69183198 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1b5ad0be1bf2f2c7ddadfbe7aec812a7e5738b03a44204bfd17716497549f48a +size 128027 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..76860c579af79d622285a71b12b04903cb35fa3e --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,423 @@ +{ + "results": { + "xstorycloze": { + "acc,none": 0.6262559412791048, + "acc_stderr,none": 0.06357134665830858, + "alias": "xstorycloze" + }, + "xstorycloze_ar": { + "acc,none": 0.5936465916611515, + "acc_stderr,none": 0.012639429420389868, + "alias": " - xstorycloze_ar" + }, + "xstorycloze_en": { + "acc,none": 0.7796161482461945, + "acc_stderr,none": 0.010666988429058725, + "alias": " - xstorycloze_en" + }, + "xstorycloze_es": { + "acc,none": 0.7114493712772998, + "acc_stderr,none": 0.011659892295188141, + "alias": " - xstorycloze_es" + }, + "xstorycloze_eu": { + "acc,none": 0.5559232296492389, + "acc_stderr,none": 0.012786390539820834, + "alias": " - xstorycloze_eu" + }, + "xstorycloze_hi": { + "acc,none": 0.5956320317670417, + "acc_stderr,none": 0.012629580396570939, + "alias": " - xstorycloze_hi" + }, + "xstorycloze_id": { + "acc,none": 0.6604897418927862, + "acc_stderr,none": 0.012186276146659455, + "alias": " - xstorycloze_id" + }, + "xstorycloze_my": { + "acc,none": 0.5268034414295168, + "acc_stderr,none": 0.01284862389950577, + "alias": " - xstorycloze_my" + }, + "xstorycloze_ru": { + "acc,none": 0.6836532097948379, + "acc_stderr,none": 0.011967713146973756, + "alias": " - xstorycloze_ru" + }, + "xstorycloze_sw": { + "acc,none": 0.5552614162806089, + "acc_stderr,none": 0.012788295970207794, + "alias": " - xstorycloze_sw" + }, + "xstorycloze_te": { + "acc,none": 0.5876902713434812, + "acc_stderr,none": 0.012667694122397054, + "alias": " - xstorycloze_te" + }, + "xstorycloze_zh": { + "acc,none": 0.6386499007279947, + "acc_stderr,none": 0.012362520934650885, + "alias": " - xstorycloze_zh" + } + }, + "groups": { + "xstorycloze": { + "acc,none": 0.6262559412791048, + "acc_stderr,none": 0.06357134665830858, + "alias": "xstorycloze" + } + }, + "configs": { + "xstorycloze_ar": { + "task": "xstorycloze_ar", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ar", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_en": { + "task": "xstorycloze_en", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "en", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_es": { + "task": "xstorycloze_es", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "es", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_eu": { + "task": "xstorycloze_eu", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "eu", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_hi": { + "task": "xstorycloze_hi", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "hi", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_id": { + "task": "xstorycloze_id", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "id", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_my": { + "task": "xstorycloze_my", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "my", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_ru": { + "task": "xstorycloze_ru", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "ru", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_sw": { + "task": "xstorycloze_sw", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "sw", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_te": { + "task": "xstorycloze_te", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "te", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + }, + "xstorycloze_zh": { + "task": "xstorycloze_zh", + "group": "xstorycloze", + "dataset_path": "juletxara/xstory_cloze", + "dataset_name": "zh", + "training_split": "train", + "validation_split": "eval", + "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "doc_to_target": "{{answer_right_ending-1}}", + "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": true, + "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}", + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xstorycloze": "N/A", + "xstorycloze_ar": 1.0, + "xstorycloze_en": 1.0, + "xstorycloze_es": 1.0, + "xstorycloze_eu": 1.0, + "xstorycloze_hi": 1.0, + "xstorycloze_id": 1.0, + "xstorycloze_my": 1.0, + "xstorycloze_ru": 1.0, + "xstorycloze_sw": 1.0, + "xstorycloze_te": 1.0, + "xstorycloze_zh": 1.0 + }, + "n-shot": { + "xstorycloze": 0, + "xstorycloze_ar": 0, + "xstorycloze_en": 0, + "xstorycloze_es": 0, + "xstorycloze_eu": 0, + "xstorycloze_hi": 0, + "xstorycloze_id": 0, + "xstorycloze_my": 0, + "xstorycloze_ru": 0, + "xstorycloze_sw": 0, + "xstorycloze_te": 0, + "xstorycloze_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..d5ea4a31d03a620bf26514747d1de480a08bd8a3 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b9f1ee5489a7ddd376fcdda5eacdf29e4c0d1ff6cb8170bbed876ba17e29af15 +size 42375 diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json new file mode 100644 index 0000000000000000000000000000000000000000..31a644dfa1a972d9cd27fc6aa32a61b919f12121 --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json @@ -0,0 +1,248 @@ +{ + "results": { + "xwinograd": { + "acc,none": 0.8102944481906046, + "acc_stderr,none": 0.035560982534502246, + "alias": "xwinograd" + }, + "xwinograd_en": { + "acc,none": 0.8653763440860215, + "acc_stderr,none": 0.007080193677104268, + "alias": " - xwinograd_en" + }, + "xwinograd_fr": { + "acc,none": 0.7349397590361446, + "acc_stderr,none": 0.04874064133109369, + "alias": " - xwinograd_fr" + }, + "xwinograd_jp": { + "acc,none": 0.7434827945776851, + "acc_stderr,none": 0.014109478326566515, + "alias": " - xwinograd_jp" + }, + "xwinograd_pt": { + "acc,none": 0.7870722433460076, + "acc_stderr,none": 0.025291395445662848, + "alias": " - xwinograd_pt" + }, + "xwinograd_ru": { + "acc,none": 0.6761904761904762, + "acc_stderr,none": 0.026406722996729984, + "alias": " - xwinograd_ru" + }, + "xwinograd_zh": { + "acc,none": 0.7916666666666666, + "acc_stderr,none": 0.018107836663152056, + "alias": " - xwinograd_zh" + } + }, + "groups": { + "xwinograd": { + "acc,none": 0.8102944481906046, + "acc_stderr,none": 0.035560982534502246, + "alias": "xwinograd" + } + }, + "configs": { + "xwinograd_en": { + "task": "xwinograd_en", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "en", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_fr": { + "task": "xwinograd_fr", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "fr", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_jp": { + "task": "xwinograd_jp", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "jp", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_pt": { + "task": "xwinograd_pt", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "pt", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_ru": { + "task": "xwinograd_ru", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "ru", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + }, + "xwinograd_zh": { + "task": "xwinograd_zh", + "group": [ + "xwinograd" + ], + "dataset_path": "Muennighoff/xwinograd", + "dataset_name": "zh", + "test_split": "test", + "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", + "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", + "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", + "description": "", + "target_delimiter": " ", + "fewshot_delimiter": "\n\n", + "metric_list": [ + { + "metric": "acc", + "aggregation": "mean", + "higher_is_better": true + } + ], + "output_type": "multiple_choice", + "repeats": 1, + "should_decontaminate": false, + "metadata": { + "version": 1.0 + } + } + }, + "versions": { + "xwinograd": "N/A", + "xwinograd_en": 1.0, + "xwinograd_fr": 1.0, + "xwinograd_jp": 1.0, + "xwinograd_pt": 1.0, + "xwinograd_ru": 1.0, + "xwinograd_zh": 1.0 + }, + "n-shot": { + "xwinograd": 0, + "xwinograd_en": 0, + "xwinograd_fr": 0, + "xwinograd_jp": 0, + "xwinograd_pt": 0, + "xwinograd_ru": 0, + "xwinograd_zh": 0 + }, + "config": { + "model": "hf", + "model_args": "pretrained=./rwkv-x-dev/chunk7-1-0_85_pth,dtype=bfloat16,trust_remote_code=True", + "batch_size": "auto", + "batch_sizes": [ + 64 + ], + "device": null, + "use_cache": null, + "limit": null, + "bootstrap_iters": 100000, + "gen_kwargs": null + }, + "git_hash": "5e02eea" +} \ No newline at end of file diff --git a/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log new file mode 100644 index 0000000000000000000000000000000000000000..af6853ada8b52faf229cb1c3962ef436c7483a9f --- /dev/null +++ b/lm-eval-output/rwkv-x-dev/chunk7-1-0_85/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc598b2ca79c5a66fbb49d61975444b89d4647f15d8477ee1c96984bcff02489 +size 20817