Commit
·
dbdb56b
1
Parent(s):
f51cd13
mistral results
Browse files- lm-eval-output/mistralai/Mistral-7B-v0.1/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +390 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +548 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +423 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +248 -0
- lm-eval-output/mistralai/Mistral-7B-v0.1/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
lm-eval-output/mistralai/Mistral-7B-v0.1/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8de1ed25837c0ef688c4268edeea05b68554e5584031e26f2df1ba7a1158fe95
|
| 3 |
+
size 5549113
|
lm-eval-output/mistralai/Mistral-7B-v0.1/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"lambada_multilingual": {
|
| 4 |
+
"perplexity,none": 27.047409162154935,
|
| 5 |
+
"perplexity_stderr,none": 8.199911438395738,
|
| 6 |
+
"acc,none": 0.5190374539103435,
|
| 7 |
+
"acc_stderr,none": 0.07089117907004505,
|
| 8 |
+
"alias": "lambada_multilingual"
|
| 9 |
+
},
|
| 10 |
+
"lambada_openai_mt_de": {
|
| 11 |
+
"perplexity,none": 43.294453054791916,
|
| 12 |
+
"perplexity_stderr,none": 2.4066806886162686,
|
| 13 |
+
"acc,none": 0.39996118765767513,
|
| 14 |
+
"acc_stderr,none": 0.006825125929166165,
|
| 15 |
+
"alias": " - lambada_openai_mt_de"
|
| 16 |
+
},
|
| 17 |
+
"lambada_openai_mt_en": {
|
| 18 |
+
"perplexity,none": 3.1814104914677763,
|
| 19 |
+
"perplexity_stderr,none": 0.05822157255540461,
|
| 20 |
+
"acc,none": 0.7554822433533864,
|
| 21 |
+
"acc_stderr,none": 0.005987967089937308,
|
| 22 |
+
"alias": " - lambada_openai_mt_en"
|
| 23 |
+
},
|
| 24 |
+
"lambada_openai_mt_es": {
|
| 25 |
+
"perplexity,none": 36.26423960927208,
|
| 26 |
+
"perplexity_stderr,none": 1.790606090078102,
|
| 27 |
+
"acc,none": 0.42790607413157383,
|
| 28 |
+
"acc_stderr,none": 0.00689318551693077,
|
| 29 |
+
"alias": " - lambada_openai_mt_es"
|
| 30 |
+
},
|
| 31 |
+
"lambada_openai_mt_fr": {
|
| 32 |
+
"perplexity,none": 22.218390608610928,
|
| 33 |
+
"perplexity_stderr,none": 1.1061897900321798,
|
| 34 |
+
"acc,none": 0.5214438191344848,
|
| 35 |
+
"acc_stderr,none": 0.006959568274744848,
|
| 36 |
+
"alias": " - lambada_openai_mt_fr"
|
| 37 |
+
},
|
| 38 |
+
"lambada_openai_mt_it": {
|
| 39 |
+
"perplexity,none": 30.278552046631987,
|
| 40 |
+
"perplexity_stderr,none": 1.6707259318257452,
|
| 41 |
+
"acc,none": 0.49039394527459734,
|
| 42 |
+
"acc_stderr,none": 0.006964691949428186,
|
| 43 |
+
"alias": " - lambada_openai_mt_it"
|
| 44 |
+
}
|
| 45 |
+
},
|
| 46 |
+
"groups": {
|
| 47 |
+
"lambada_multilingual": {
|
| 48 |
+
"perplexity,none": 27.047409162154935,
|
| 49 |
+
"perplexity_stderr,none": 8.199911438395738,
|
| 50 |
+
"acc,none": 0.5190374539103435,
|
| 51 |
+
"acc_stderr,none": 0.07089117907004505,
|
| 52 |
+
"alias": "lambada_multilingual"
|
| 53 |
+
}
|
| 54 |
+
},
|
| 55 |
+
"configs": {
|
| 56 |
+
"lambada_openai_mt_de": {
|
| 57 |
+
"task": "lambada_openai_mt_de",
|
| 58 |
+
"group": [
|
| 59 |
+
"lambada_multilingual"
|
| 60 |
+
],
|
| 61 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
| 62 |
+
"dataset_name": "de",
|
| 63 |
+
"test_split": "test",
|
| 64 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
| 65 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
| 66 |
+
"description": "",
|
| 67 |
+
"target_delimiter": " ",
|
| 68 |
+
"fewshot_delimiter": "\n\n",
|
| 69 |
+
"metric_list": [
|
| 70 |
+
{
|
| 71 |
+
"metric": "perplexity",
|
| 72 |
+
"aggregation": "perplexity",
|
| 73 |
+
"higher_is_better": false
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"metric": "acc",
|
| 77 |
+
"aggregation": "mean",
|
| 78 |
+
"higher_is_better": true
|
| 79 |
+
}
|
| 80 |
+
],
|
| 81 |
+
"output_type": "loglikelihood",
|
| 82 |
+
"repeats": 1,
|
| 83 |
+
"should_decontaminate": true,
|
| 84 |
+
"doc_to_decontamination_query": "{{text}}",
|
| 85 |
+
"metadata": {
|
| 86 |
+
"version": 1.0
|
| 87 |
+
}
|
| 88 |
+
},
|
| 89 |
+
"lambada_openai_mt_en": {
|
| 90 |
+
"task": "lambada_openai_mt_en",
|
| 91 |
+
"group": [
|
| 92 |
+
"lambada_multilingual"
|
| 93 |
+
],
|
| 94 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
| 95 |
+
"dataset_name": "en",
|
| 96 |
+
"test_split": "test",
|
| 97 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
| 98 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
| 99 |
+
"description": "",
|
| 100 |
+
"target_delimiter": " ",
|
| 101 |
+
"fewshot_delimiter": "\n\n",
|
| 102 |
+
"metric_list": [
|
| 103 |
+
{
|
| 104 |
+
"metric": "perplexity",
|
| 105 |
+
"aggregation": "perplexity",
|
| 106 |
+
"higher_is_better": false
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"metric": "acc",
|
| 110 |
+
"aggregation": "mean",
|
| 111 |
+
"higher_is_better": true
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
"output_type": "loglikelihood",
|
| 115 |
+
"repeats": 1,
|
| 116 |
+
"should_decontaminate": true,
|
| 117 |
+
"doc_to_decontamination_query": "{{text}}",
|
| 118 |
+
"metadata": {
|
| 119 |
+
"version": 1.0
|
| 120 |
+
}
|
| 121 |
+
},
|
| 122 |
+
"lambada_openai_mt_es": {
|
| 123 |
+
"task": "lambada_openai_mt_es",
|
| 124 |
+
"group": [
|
| 125 |
+
"lambada_multilingual"
|
| 126 |
+
],
|
| 127 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
| 128 |
+
"dataset_name": "es",
|
| 129 |
+
"test_split": "test",
|
| 130 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
| 131 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
| 132 |
+
"description": "",
|
| 133 |
+
"target_delimiter": " ",
|
| 134 |
+
"fewshot_delimiter": "\n\n",
|
| 135 |
+
"metric_list": [
|
| 136 |
+
{
|
| 137 |
+
"metric": "perplexity",
|
| 138 |
+
"aggregation": "perplexity",
|
| 139 |
+
"higher_is_better": false
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"metric": "acc",
|
| 143 |
+
"aggregation": "mean",
|
| 144 |
+
"higher_is_better": true
|
| 145 |
+
}
|
| 146 |
+
],
|
| 147 |
+
"output_type": "loglikelihood",
|
| 148 |
+
"repeats": 1,
|
| 149 |
+
"should_decontaminate": true,
|
| 150 |
+
"doc_to_decontamination_query": "{{text}}",
|
| 151 |
+
"metadata": {
|
| 152 |
+
"version": 1.0
|
| 153 |
+
}
|
| 154 |
+
},
|
| 155 |
+
"lambada_openai_mt_fr": {
|
| 156 |
+
"task": "lambada_openai_mt_fr",
|
| 157 |
+
"group": [
|
| 158 |
+
"lambada_multilingual"
|
| 159 |
+
],
|
| 160 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
| 161 |
+
"dataset_name": "fr",
|
| 162 |
+
"test_split": "test",
|
| 163 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
| 164 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
| 165 |
+
"description": "",
|
| 166 |
+
"target_delimiter": " ",
|
| 167 |
+
"fewshot_delimiter": "\n\n",
|
| 168 |
+
"metric_list": [
|
| 169 |
+
{
|
| 170 |
+
"metric": "perplexity",
|
| 171 |
+
"aggregation": "perplexity",
|
| 172 |
+
"higher_is_better": false
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"metric": "acc",
|
| 176 |
+
"aggregation": "mean",
|
| 177 |
+
"higher_is_better": true
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"output_type": "loglikelihood",
|
| 181 |
+
"repeats": 1,
|
| 182 |
+
"should_decontaminate": true,
|
| 183 |
+
"doc_to_decontamination_query": "{{text}}",
|
| 184 |
+
"metadata": {
|
| 185 |
+
"version": 1.0
|
| 186 |
+
}
|
| 187 |
+
},
|
| 188 |
+
"lambada_openai_mt_it": {
|
| 189 |
+
"task": "lambada_openai_mt_it",
|
| 190 |
+
"group": [
|
| 191 |
+
"lambada_multilingual"
|
| 192 |
+
],
|
| 193 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
| 194 |
+
"dataset_name": "it",
|
| 195 |
+
"test_split": "test",
|
| 196 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
| 197 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
| 198 |
+
"description": "",
|
| 199 |
+
"target_delimiter": " ",
|
| 200 |
+
"fewshot_delimiter": "\n\n",
|
| 201 |
+
"metric_list": [
|
| 202 |
+
{
|
| 203 |
+
"metric": "perplexity",
|
| 204 |
+
"aggregation": "perplexity",
|
| 205 |
+
"higher_is_better": false
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"metric": "acc",
|
| 209 |
+
"aggregation": "mean",
|
| 210 |
+
"higher_is_better": true
|
| 211 |
+
}
|
| 212 |
+
],
|
| 213 |
+
"output_type": "loglikelihood",
|
| 214 |
+
"repeats": 1,
|
| 215 |
+
"should_decontaminate": true,
|
| 216 |
+
"doc_to_decontamination_query": "{{text}}",
|
| 217 |
+
"metadata": {
|
| 218 |
+
"version": 1.0
|
| 219 |
+
}
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"versions": {
|
| 223 |
+
"lambada_multilingual": "N/A",
|
| 224 |
+
"lambada_openai_mt_de": 1.0,
|
| 225 |
+
"lambada_openai_mt_en": 1.0,
|
| 226 |
+
"lambada_openai_mt_es": 1.0,
|
| 227 |
+
"lambada_openai_mt_fr": 1.0,
|
| 228 |
+
"lambada_openai_mt_it": 1.0
|
| 229 |
+
},
|
| 230 |
+
"n-shot": {
|
| 231 |
+
"lambada_multilingual": 0,
|
| 232 |
+
"lambada_openai_mt_de": 0,
|
| 233 |
+
"lambada_openai_mt_en": 0,
|
| 234 |
+
"lambada_openai_mt_es": 0,
|
| 235 |
+
"lambada_openai_mt_fr": 0,
|
| 236 |
+
"lambada_openai_mt_it": 0
|
| 237 |
+
},
|
| 238 |
+
"config": {
|
| 239 |
+
"model": "hf",
|
| 240 |
+
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,trust_remote_code=True",
|
| 241 |
+
"batch_size": "auto",
|
| 242 |
+
"batch_sizes": [
|
| 243 |
+
32
|
| 244 |
+
],
|
| 245 |
+
"device": null,
|
| 246 |
+
"use_cache": null,
|
| 247 |
+
"limit": null,
|
| 248 |
+
"bootstrap_iters": 100000,
|
| 249 |
+
"gen_kwargs": null
|
| 250 |
+
},
|
| 251 |
+
"git_hash": "da066fa"
|
| 252 |
+
}
|
lm-eval-output/mistralai/Mistral-7B-v0.1/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d29f9d3e9d0b8174da3244ea3ec8ea347fb61dac76584d30bae78153c20970a
|
| 3 |
+
size 96076
|
lm-eval-output/mistralai/Mistral-7B-v0.1/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb7f09b298501f80aca8ff19a293a37db611559b4723d70c995c0d6c0e190597
|
| 3 |
+
size 2411588
|
lm-eval-output/mistralai/Mistral-7B-v0.1/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"pawsx": {
|
| 4 |
+
"acc,none": 0.41585714285714287,
|
| 5 |
+
"acc_stderr,none": 0.05538778178867068,
|
| 6 |
+
"alias": "pawsx"
|
| 7 |
+
},
|
| 8 |
+
"paws_de": {
|
| 9 |
+
"acc,none": 0.385,
|
| 10 |
+
"acc_stderr,none": 0.010883323176386978,
|
| 11 |
+
"alias": " - paws_de"
|
| 12 |
+
},
|
| 13 |
+
"paws_en": {
|
| 14 |
+
"acc,none": 0.3125,
|
| 15 |
+
"acc_stderr,none": 0.010367044555050548,
|
| 16 |
+
"alias": " - paws_en"
|
| 17 |
+
},
|
| 18 |
+
"paws_es": {
|
| 19 |
+
"acc,none": 0.356,
|
| 20 |
+
"acc_stderr,none": 0.010709311120344539,
|
| 21 |
+
"alias": " - paws_es"
|
| 22 |
+
},
|
| 23 |
+
"paws_fr": {
|
| 24 |
+
"acc,none": 0.4885,
|
| 25 |
+
"acc_stderr,none": 0.011180177690296085,
|
| 26 |
+
"alias": " - paws_fr"
|
| 27 |
+
},
|
| 28 |
+
"paws_ja": {
|
| 29 |
+
"acc,none": 0.534,
|
| 30 |
+
"acc_stderr,none": 0.011157250652425779,
|
| 31 |
+
"alias": " - paws_ja"
|
| 32 |
+
},
|
| 33 |
+
"paws_ko": {
|
| 34 |
+
"acc,none": 0.4175,
|
| 35 |
+
"acc_stderr,none": 0.011029855114729358,
|
| 36 |
+
"alias": " - paws_ko"
|
| 37 |
+
},
|
| 38 |
+
"paws_zh": {
|
| 39 |
+
"acc,none": 0.4175,
|
| 40 |
+
"acc_stderr,none": 0.011029855114729354,
|
| 41 |
+
"alias": " - paws_zh"
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"groups": {
|
| 45 |
+
"pawsx": {
|
| 46 |
+
"acc,none": 0.41585714285714287,
|
| 47 |
+
"acc_stderr,none": 0.05538778178867068,
|
| 48 |
+
"alias": "pawsx"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"configs": {
|
| 52 |
+
"paws_de": {
|
| 53 |
+
"task": "paws_de",
|
| 54 |
+
"group": "pawsx",
|
| 55 |
+
"dataset_path": "paws-x",
|
| 56 |
+
"dataset_name": "de",
|
| 57 |
+
"training_split": "train",
|
| 58 |
+
"validation_split": "validation",
|
| 59 |
+
"test_split": "test",
|
| 60 |
+
"doc_to_text": "",
|
| 61 |
+
"doc_to_target": "label",
|
| 62 |
+
"doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
|
| 63 |
+
"description": "",
|
| 64 |
+
"target_delimiter": " ",
|
| 65 |
+
"fewshot_delimiter": "\n\n",
|
| 66 |
+
"metric_list": [
|
| 67 |
+
{
|
| 68 |
+
"metric": "acc",
|
| 69 |
+
"aggregation": "mean",
|
| 70 |
+
"higher_is_better": true
|
| 71 |
+
}
|
| 72 |
+
],
|
| 73 |
+
"output_type": "multiple_choice",
|
| 74 |
+
"repeats": 1,
|
| 75 |
+
"should_decontaminate": false,
|
| 76 |
+
"metadata": {
|
| 77 |
+
"version": 0.0
|
| 78 |
+
}
|
| 79 |
+
},
|
| 80 |
+
"paws_en": {
|
| 81 |
+
"task": "paws_en",
|
| 82 |
+
"group": "pawsx",
|
| 83 |
+
"dataset_path": "paws-x",
|
| 84 |
+
"dataset_name": "en",
|
| 85 |
+
"training_split": "train",
|
| 86 |
+
"validation_split": "validation",
|
| 87 |
+
"test_split": "test",
|
| 88 |
+
"doc_to_text": "",
|
| 89 |
+
"doc_to_target": "label",
|
| 90 |
+
"doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
|
| 91 |
+
"description": "",
|
| 92 |
+
"target_delimiter": " ",
|
| 93 |
+
"fewshot_delimiter": "\n\n",
|
| 94 |
+
"metric_list": [
|
| 95 |
+
{
|
| 96 |
+
"metric": "acc",
|
| 97 |
+
"aggregation": "mean",
|
| 98 |
+
"higher_is_better": true
|
| 99 |
+
}
|
| 100 |
+
],
|
| 101 |
+
"output_type": "multiple_choice",
|
| 102 |
+
"repeats": 1,
|
| 103 |
+
"should_decontaminate": false,
|
| 104 |
+
"metadata": {
|
| 105 |
+
"version": 0.0
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
"paws_es": {
|
| 109 |
+
"task": "paws_es",
|
| 110 |
+
"group": "pawsx",
|
| 111 |
+
"dataset_path": "paws-x",
|
| 112 |
+
"dataset_name": "es",
|
| 113 |
+
"training_split": "train",
|
| 114 |
+
"validation_split": "validation",
|
| 115 |
+
"test_split": "test",
|
| 116 |
+
"doc_to_text": "",
|
| 117 |
+
"doc_to_target": "label",
|
| 118 |
+
"doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
|
| 119 |
+
"description": "",
|
| 120 |
+
"target_delimiter": " ",
|
| 121 |
+
"fewshot_delimiter": "\n\n",
|
| 122 |
+
"metric_list": [
|
| 123 |
+
{
|
| 124 |
+
"metric": "acc",
|
| 125 |
+
"aggregation": "mean",
|
| 126 |
+
"higher_is_better": true
|
| 127 |
+
}
|
| 128 |
+
],
|
| 129 |
+
"output_type": "multiple_choice",
|
| 130 |
+
"repeats": 1,
|
| 131 |
+
"should_decontaminate": false,
|
| 132 |
+
"metadata": {
|
| 133 |
+
"version": 0.0
|
| 134 |
+
}
|
| 135 |
+
},
|
| 136 |
+
"paws_fr": {
|
| 137 |
+
"task": "paws_fr",
|
| 138 |
+
"group": "pawsx",
|
| 139 |
+
"dataset_path": "paws-x",
|
| 140 |
+
"dataset_name": "fr",
|
| 141 |
+
"training_split": "train",
|
| 142 |
+
"validation_split": "validation",
|
| 143 |
+
"test_split": "test",
|
| 144 |
+
"doc_to_text": "",
|
| 145 |
+
"doc_to_target": "label",
|
| 146 |
+
"doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
|
| 147 |
+
"description": "",
|
| 148 |
+
"target_delimiter": " ",
|
| 149 |
+
"fewshot_delimiter": "\n\n",
|
| 150 |
+
"metric_list": [
|
| 151 |
+
{
|
| 152 |
+
"metric": "acc",
|
| 153 |
+
"aggregation": "mean",
|
| 154 |
+
"higher_is_better": true
|
| 155 |
+
}
|
| 156 |
+
],
|
| 157 |
+
"output_type": "multiple_choice",
|
| 158 |
+
"repeats": 1,
|
| 159 |
+
"should_decontaminate": false,
|
| 160 |
+
"metadata": {
|
| 161 |
+
"version": 0.0
|
| 162 |
+
}
|
| 163 |
+
},
|
| 164 |
+
"paws_ja": {
|
| 165 |
+
"task": "paws_ja",
|
| 166 |
+
"group": "pawsx",
|
| 167 |
+
"dataset_path": "paws-x",
|
| 168 |
+
"dataset_name": "ja",
|
| 169 |
+
"training_split": "train",
|
| 170 |
+
"validation_split": "validation",
|
| 171 |
+
"test_split": "test",
|
| 172 |
+
"doc_to_text": "",
|
| 173 |
+
"doc_to_target": "label",
|
| 174 |
+
"doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
|
| 175 |
+
"description": "",
|
| 176 |
+
"target_delimiter": " ",
|
| 177 |
+
"fewshot_delimiter": "\n\n",
|
| 178 |
+
"metric_list": [
|
| 179 |
+
{
|
| 180 |
+
"metric": "acc",
|
| 181 |
+
"aggregation": "mean",
|
| 182 |
+
"higher_is_better": true
|
| 183 |
+
}
|
| 184 |
+
],
|
| 185 |
+
"output_type": "multiple_choice",
|
| 186 |
+
"repeats": 1,
|
| 187 |
+
"should_decontaminate": false,
|
| 188 |
+
"metadata": {
|
| 189 |
+
"version": 0.0
|
| 190 |
+
}
|
| 191 |
+
},
|
| 192 |
+
"paws_ko": {
|
| 193 |
+
"task": "paws_ko",
|
| 194 |
+
"group": "pawsx",
|
| 195 |
+
"dataset_path": "paws-x",
|
| 196 |
+
"dataset_name": "ko",
|
| 197 |
+
"training_split": "train",
|
| 198 |
+
"validation_split": "validation",
|
| 199 |
+
"test_split": "test",
|
| 200 |
+
"doc_to_text": "",
|
| 201 |
+
"doc_to_target": "label",
|
| 202 |
+
"doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
|
| 203 |
+
"description": "",
|
| 204 |
+
"target_delimiter": " ",
|
| 205 |
+
"fewshot_delimiter": "\n\n",
|
| 206 |
+
"metric_list": [
|
| 207 |
+
{
|
| 208 |
+
"metric": "acc",
|
| 209 |
+
"aggregation": "mean",
|
| 210 |
+
"higher_is_better": true
|
| 211 |
+
}
|
| 212 |
+
],
|
| 213 |
+
"output_type": "multiple_choice",
|
| 214 |
+
"repeats": 1,
|
| 215 |
+
"should_decontaminate": false,
|
| 216 |
+
"metadata": {
|
| 217 |
+
"version": 0.0
|
| 218 |
+
}
|
| 219 |
+
},
|
| 220 |
+
"paws_zh": {
|
| 221 |
+
"task": "paws_zh",
|
| 222 |
+
"group": "pawsx",
|
| 223 |
+
"dataset_path": "paws-x",
|
| 224 |
+
"dataset_name": "zh",
|
| 225 |
+
"training_split": "train",
|
| 226 |
+
"validation_split": "validation",
|
| 227 |
+
"test_split": "test",
|
| 228 |
+
"doc_to_text": "",
|
| 229 |
+
"doc_to_target": "label",
|
| 230 |
+
"doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
|
| 231 |
+
"description": "",
|
| 232 |
+
"target_delimiter": " ",
|
| 233 |
+
"fewshot_delimiter": "\n\n",
|
| 234 |
+
"metric_list": [
|
| 235 |
+
{
|
| 236 |
+
"metric": "acc",
|
| 237 |
+
"aggregation": "mean",
|
| 238 |
+
"higher_is_better": true
|
| 239 |
+
}
|
| 240 |
+
],
|
| 241 |
+
"output_type": "multiple_choice",
|
| 242 |
+
"repeats": 1,
|
| 243 |
+
"should_decontaminate": false,
|
| 244 |
+
"metadata": {
|
| 245 |
+
"version": 0.0
|
| 246 |
+
}
|
| 247 |
+
}
|
| 248 |
+
},
|
| 249 |
+
"versions": {
|
| 250 |
+
"paws_de": 0.0,
|
| 251 |
+
"paws_en": 0.0,
|
| 252 |
+
"paws_es": 0.0,
|
| 253 |
+
"paws_fr": 0.0,
|
| 254 |
+
"paws_ja": 0.0,
|
| 255 |
+
"paws_ko": 0.0,
|
| 256 |
+
"paws_zh": 0.0,
|
| 257 |
+
"pawsx": "N/A"
|
| 258 |
+
},
|
| 259 |
+
"n-shot": {
|
| 260 |
+
"paws_de": 0,
|
| 261 |
+
"paws_en": 0,
|
| 262 |
+
"paws_es": 0,
|
| 263 |
+
"paws_fr": 0,
|
| 264 |
+
"paws_ja": 0,
|
| 265 |
+
"paws_ko": 0,
|
| 266 |
+
"paws_zh": 0,
|
| 267 |
+
"pawsx": 0
|
| 268 |
+
},
|
| 269 |
+
"config": {
|
| 270 |
+
"model": "hf",
|
| 271 |
+
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,trust_remote_code=True",
|
| 272 |
+
"batch_size": "auto",
|
| 273 |
+
"batch_sizes": [
|
| 274 |
+
32
|
| 275 |
+
],
|
| 276 |
+
"device": null,
|
| 277 |
+
"use_cache": null,
|
| 278 |
+
"limit": null,
|
| 279 |
+
"bootstrap_iters": 100000,
|
| 280 |
+
"gen_kwargs": null
|
| 281 |
+
},
|
| 282 |
+
"git_hash": "da066fa"
|
| 283 |
+
}
|
lm-eval-output/mistralai/Mistral-7B-v0.1/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b564c41ab359d61822292adfb65cd831b669792266f09972f317929515f28c4e
|
| 3 |
+
size 34851
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6c39310920af2ea38f6ca8e2618e3e964aacf7acf593ec5688e4b7951653f51
|
| 3 |
+
size 644883
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"xcopa": {
|
| 4 |
+
"acc,none": 0.5587272727272727,
|
| 5 |
+
"acc_stderr,none": 0.0551636604460852,
|
| 6 |
+
"alias": "xcopa"
|
| 7 |
+
},
|
| 8 |
+
"xcopa_et": {
|
| 9 |
+
"acc,none": 0.466,
|
| 10 |
+
"acc_stderr,none": 0.02233126442325838,
|
| 11 |
+
"alias": " - xcopa_et"
|
| 12 |
+
},
|
| 13 |
+
"xcopa_ht": {
|
| 14 |
+
"acc,none": 0.512,
|
| 15 |
+
"acc_stderr,none": 0.02237662679792717,
|
| 16 |
+
"alias": " - xcopa_ht"
|
| 17 |
+
},
|
| 18 |
+
"xcopa_id": {
|
| 19 |
+
"acc,none": 0.582,
|
| 20 |
+
"acc_stderr,none": 0.022080014812228137,
|
| 21 |
+
"alias": " - xcopa_id"
|
| 22 |
+
},
|
| 23 |
+
"xcopa_it": {
|
| 24 |
+
"acc,none": 0.66,
|
| 25 |
+
"acc_stderr,none": 0.021206117013673066,
|
| 26 |
+
"alias": " - xcopa_it"
|
| 27 |
+
},
|
| 28 |
+
"xcopa_qu": {
|
| 29 |
+
"acc,none": 0.482,
|
| 30 |
+
"acc_stderr,none": 0.02236856511738799,
|
| 31 |
+
"alias": " - xcopa_qu"
|
| 32 |
+
},
|
| 33 |
+
"xcopa_sw": {
|
| 34 |
+
"acc,none": 0.518,
|
| 35 |
+
"acc_stderr,none": 0.02236856511738799,
|
| 36 |
+
"alias": " - xcopa_sw"
|
| 37 |
+
},
|
| 38 |
+
"xcopa_ta": {
|
| 39 |
+
"acc,none": 0.542,
|
| 40 |
+
"acc_stderr,none": 0.02230396677426995,
|
| 41 |
+
"alias": " - xcopa_ta"
|
| 42 |
+
},
|
| 43 |
+
"xcopa_th": {
|
| 44 |
+
"acc,none": 0.564,
|
| 45 |
+
"acc_stderr,none": 0.0221989546414768,
|
| 46 |
+
"alias": " - xcopa_th"
|
| 47 |
+
},
|
| 48 |
+
"xcopa_tr": {
|
| 49 |
+
"acc,none": 0.568,
|
| 50 |
+
"acc_stderr,none": 0.02217510926561316,
|
| 51 |
+
"alias": " - xcopa_tr"
|
| 52 |
+
},
|
| 53 |
+
"xcopa_vi": {
|
| 54 |
+
"acc,none": 0.59,
|
| 55 |
+
"acc_stderr,none": 0.022017482578127672,
|
| 56 |
+
"alias": " - xcopa_vi"
|
| 57 |
+
},
|
| 58 |
+
"xcopa_zh": {
|
| 59 |
+
"acc,none": 0.662,
|
| 60 |
+
"acc_stderr,none": 0.021175665695209407,
|
| 61 |
+
"alias": " - xcopa_zh"
|
| 62 |
+
}
|
| 63 |
+
},
|
| 64 |
+
"groups": {
|
| 65 |
+
"xcopa": {
|
| 66 |
+
"acc,none": 0.5587272727272727,
|
| 67 |
+
"acc_stderr,none": 0.0551636604460852,
|
| 68 |
+
"alias": "xcopa"
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
"configs": {
|
| 72 |
+
"xcopa_et": {
|
| 73 |
+
"task": "xcopa_et",
|
| 74 |
+
"group": "xcopa",
|
| 75 |
+
"dataset_path": "xcopa",
|
| 76 |
+
"dataset_name": "et",
|
| 77 |
+
"validation_split": "validation",
|
| 78 |
+
"test_split": "test",
|
| 79 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc298122660>, connector={'cause': 'sest', 'effect': 'seetõttu'})",
|
| 80 |
+
"doc_to_target": "label",
|
| 81 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 82 |
+
"description": "",
|
| 83 |
+
"target_delimiter": " ",
|
| 84 |
+
"fewshot_delimiter": "\n\n",
|
| 85 |
+
"metric_list": [
|
| 86 |
+
{
|
| 87 |
+
"metric": "acc"
|
| 88 |
+
}
|
| 89 |
+
],
|
| 90 |
+
"output_type": "multiple_choice",
|
| 91 |
+
"repeats": 1,
|
| 92 |
+
"should_decontaminate": false,
|
| 93 |
+
"metadata": {
|
| 94 |
+
"version": 1.0
|
| 95 |
+
}
|
| 96 |
+
},
|
| 97 |
+
"xcopa_ht": {
|
| 98 |
+
"task": "xcopa_ht",
|
| 99 |
+
"group": "xcopa",
|
| 100 |
+
"dataset_path": "xcopa",
|
| 101 |
+
"dataset_name": "ht",
|
| 102 |
+
"validation_split": "validation",
|
| 103 |
+
"test_split": "test",
|
| 104 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc2997a3420>, connector={'cause': 'poukisa', 'effect': 'donk sa'})",
|
| 105 |
+
"doc_to_target": "label",
|
| 106 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 107 |
+
"description": "",
|
| 108 |
+
"target_delimiter": " ",
|
| 109 |
+
"fewshot_delimiter": "\n\n",
|
| 110 |
+
"metric_list": [
|
| 111 |
+
{
|
| 112 |
+
"metric": "acc"
|
| 113 |
+
}
|
| 114 |
+
],
|
| 115 |
+
"output_type": "multiple_choice",
|
| 116 |
+
"repeats": 1,
|
| 117 |
+
"should_decontaminate": false,
|
| 118 |
+
"metadata": {
|
| 119 |
+
"version": 1.0
|
| 120 |
+
}
|
| 121 |
+
},
|
| 122 |
+
"xcopa_id": {
|
| 123 |
+
"task": "xcopa_id",
|
| 124 |
+
"group": "xcopa",
|
| 125 |
+
"dataset_path": "xcopa",
|
| 126 |
+
"dataset_name": "id",
|
| 127 |
+
"validation_split": "validation",
|
| 128 |
+
"test_split": "test",
|
| 129 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc298123560>, connector={'cause': 'karena', 'effect': 'maka'})",
|
| 130 |
+
"doc_to_target": "label",
|
| 131 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 132 |
+
"description": "",
|
| 133 |
+
"target_delimiter": " ",
|
| 134 |
+
"fewshot_delimiter": "\n\n",
|
| 135 |
+
"metric_list": [
|
| 136 |
+
{
|
| 137 |
+
"metric": "acc"
|
| 138 |
+
}
|
| 139 |
+
],
|
| 140 |
+
"output_type": "multiple_choice",
|
| 141 |
+
"repeats": 1,
|
| 142 |
+
"should_decontaminate": false,
|
| 143 |
+
"metadata": {
|
| 144 |
+
"version": 1.0
|
| 145 |
+
}
|
| 146 |
+
},
|
| 147 |
+
"xcopa_it": {
|
| 148 |
+
"task": "xcopa_it",
|
| 149 |
+
"group": "xcopa",
|
| 150 |
+
"dataset_path": "xcopa",
|
| 151 |
+
"dataset_name": "it",
|
| 152 |
+
"validation_split": "validation",
|
| 153 |
+
"test_split": "test",
|
| 154 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc2997a32e0>, connector={'cause': 'perché', 'effect': 'quindi'})",
|
| 155 |
+
"doc_to_target": "label",
|
| 156 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 157 |
+
"description": "",
|
| 158 |
+
"target_delimiter": " ",
|
| 159 |
+
"fewshot_delimiter": "\n\n",
|
| 160 |
+
"metric_list": [
|
| 161 |
+
{
|
| 162 |
+
"metric": "acc"
|
| 163 |
+
}
|
| 164 |
+
],
|
| 165 |
+
"output_type": "multiple_choice",
|
| 166 |
+
"repeats": 1,
|
| 167 |
+
"should_decontaminate": false,
|
| 168 |
+
"metadata": {
|
| 169 |
+
"version": 1.0
|
| 170 |
+
}
|
| 171 |
+
},
|
| 172 |
+
"xcopa_qu": {
|
| 173 |
+
"task": "xcopa_qu",
|
| 174 |
+
"group": "xcopa",
|
| 175 |
+
"dataset_path": "xcopa",
|
| 176 |
+
"dataset_name": "qu",
|
| 177 |
+
"validation_split": "validation",
|
| 178 |
+
"test_split": "test",
|
| 179 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc29972b2e0>, connector={'cause': 'imataq', 'effect': 'chaymi'})",
|
| 180 |
+
"doc_to_target": "label",
|
| 181 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 182 |
+
"description": "",
|
| 183 |
+
"target_delimiter": " ",
|
| 184 |
+
"fewshot_delimiter": "\n\n",
|
| 185 |
+
"metric_list": [
|
| 186 |
+
{
|
| 187 |
+
"metric": "acc"
|
| 188 |
+
}
|
| 189 |
+
],
|
| 190 |
+
"output_type": "multiple_choice",
|
| 191 |
+
"repeats": 1,
|
| 192 |
+
"should_decontaminate": false,
|
| 193 |
+
"metadata": {
|
| 194 |
+
"version": 1.0
|
| 195 |
+
}
|
| 196 |
+
},
|
| 197 |
+
"xcopa_sw": {
|
| 198 |
+
"task": "xcopa_sw",
|
| 199 |
+
"group": "xcopa",
|
| 200 |
+
"dataset_path": "xcopa",
|
| 201 |
+
"dataset_name": "sw",
|
| 202 |
+
"validation_split": "validation",
|
| 203 |
+
"test_split": "test",
|
| 204 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc2997a36a0>, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})",
|
| 205 |
+
"doc_to_target": "label",
|
| 206 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 207 |
+
"description": "",
|
| 208 |
+
"target_delimiter": " ",
|
| 209 |
+
"fewshot_delimiter": "\n\n",
|
| 210 |
+
"metric_list": [
|
| 211 |
+
{
|
| 212 |
+
"metric": "acc"
|
| 213 |
+
}
|
| 214 |
+
],
|
| 215 |
+
"output_type": "multiple_choice",
|
| 216 |
+
"repeats": 1,
|
| 217 |
+
"should_decontaminate": false,
|
| 218 |
+
"metadata": {
|
| 219 |
+
"version": 1.0
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"xcopa_ta": {
|
| 223 |
+
"task": "xcopa_ta",
|
| 224 |
+
"group": "xcopa",
|
| 225 |
+
"dataset_path": "xcopa",
|
| 226 |
+
"dataset_name": "ta",
|
| 227 |
+
"validation_split": "validation",
|
| 228 |
+
"test_split": "test",
|
| 229 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc298101da0>, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})",
|
| 230 |
+
"doc_to_target": "label",
|
| 231 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 232 |
+
"description": "",
|
| 233 |
+
"target_delimiter": " ",
|
| 234 |
+
"fewshot_delimiter": "\n\n",
|
| 235 |
+
"metric_list": [
|
| 236 |
+
{
|
| 237 |
+
"metric": "acc"
|
| 238 |
+
}
|
| 239 |
+
],
|
| 240 |
+
"output_type": "multiple_choice",
|
| 241 |
+
"repeats": 1,
|
| 242 |
+
"should_decontaminate": false,
|
| 243 |
+
"metadata": {
|
| 244 |
+
"version": 1.0
|
| 245 |
+
}
|
| 246 |
+
},
|
| 247 |
+
"xcopa_th": {
|
| 248 |
+
"task": "xcopa_th",
|
| 249 |
+
"group": "xcopa",
|
| 250 |
+
"dataset_path": "xcopa",
|
| 251 |
+
"dataset_name": "th",
|
| 252 |
+
"validation_split": "validation",
|
| 253 |
+
"test_split": "test",
|
| 254 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc2981223e0>, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})",
|
| 255 |
+
"doc_to_target": "label",
|
| 256 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 257 |
+
"description": "",
|
| 258 |
+
"target_delimiter": " ",
|
| 259 |
+
"fewshot_delimiter": "\n\n",
|
| 260 |
+
"metric_list": [
|
| 261 |
+
{
|
| 262 |
+
"metric": "acc"
|
| 263 |
+
}
|
| 264 |
+
],
|
| 265 |
+
"output_type": "multiple_choice",
|
| 266 |
+
"repeats": 1,
|
| 267 |
+
"should_decontaminate": false,
|
| 268 |
+
"metadata": {
|
| 269 |
+
"version": 1.0
|
| 270 |
+
}
|
| 271 |
+
},
|
| 272 |
+
"xcopa_tr": {
|
| 273 |
+
"task": "xcopa_tr",
|
| 274 |
+
"group": "xcopa",
|
| 275 |
+
"dataset_path": "xcopa",
|
| 276 |
+
"dataset_name": "tr",
|
| 277 |
+
"validation_split": "validation",
|
| 278 |
+
"test_split": "test",
|
| 279 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc2997a18a0>, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})",
|
| 280 |
+
"doc_to_target": "label",
|
| 281 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 282 |
+
"description": "",
|
| 283 |
+
"target_delimiter": " ",
|
| 284 |
+
"fewshot_delimiter": "\n\n",
|
| 285 |
+
"metric_list": [
|
| 286 |
+
{
|
| 287 |
+
"metric": "acc"
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"output_type": "multiple_choice",
|
| 291 |
+
"repeats": 1,
|
| 292 |
+
"should_decontaminate": false,
|
| 293 |
+
"metadata": {
|
| 294 |
+
"version": 1.0
|
| 295 |
+
}
|
| 296 |
+
},
|
| 297 |
+
"xcopa_vi": {
|
| 298 |
+
"task": "xcopa_vi",
|
| 299 |
+
"group": "xcopa",
|
| 300 |
+
"dataset_path": "xcopa",
|
| 301 |
+
"dataset_name": "vi",
|
| 302 |
+
"validation_split": "validation",
|
| 303 |
+
"test_split": "test",
|
| 304 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc298103b00>, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})",
|
| 305 |
+
"doc_to_target": "label",
|
| 306 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 307 |
+
"description": "",
|
| 308 |
+
"target_delimiter": " ",
|
| 309 |
+
"fewshot_delimiter": "\n\n",
|
| 310 |
+
"metric_list": [
|
| 311 |
+
{
|
| 312 |
+
"metric": "acc"
|
| 313 |
+
}
|
| 314 |
+
],
|
| 315 |
+
"output_type": "multiple_choice",
|
| 316 |
+
"repeats": 1,
|
| 317 |
+
"should_decontaminate": false,
|
| 318 |
+
"metadata": {
|
| 319 |
+
"version": 1.0
|
| 320 |
+
}
|
| 321 |
+
},
|
| 322 |
+
"xcopa_zh": {
|
| 323 |
+
"task": "xcopa_zh",
|
| 324 |
+
"group": "xcopa",
|
| 325 |
+
"dataset_path": "xcopa",
|
| 326 |
+
"dataset_name": "zh",
|
| 327 |
+
"validation_split": "validation",
|
| 328 |
+
"test_split": "test",
|
| 329 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7fc29b5940e0>, connector={'cause': '因为', 'effect': '所以'})",
|
| 330 |
+
"doc_to_target": "label",
|
| 331 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
| 332 |
+
"description": "",
|
| 333 |
+
"target_delimiter": " ",
|
| 334 |
+
"fewshot_delimiter": "\n\n",
|
| 335 |
+
"metric_list": [
|
| 336 |
+
{
|
| 337 |
+
"metric": "acc"
|
| 338 |
+
}
|
| 339 |
+
],
|
| 340 |
+
"output_type": "multiple_choice",
|
| 341 |
+
"repeats": 1,
|
| 342 |
+
"should_decontaminate": false,
|
| 343 |
+
"metadata": {
|
| 344 |
+
"version": 1.0
|
| 345 |
+
}
|
| 346 |
+
}
|
| 347 |
+
},
|
| 348 |
+
"versions": {
|
| 349 |
+
"xcopa": "N/A",
|
| 350 |
+
"xcopa_et": 1.0,
|
| 351 |
+
"xcopa_ht": 1.0,
|
| 352 |
+
"xcopa_id": 1.0,
|
| 353 |
+
"xcopa_it": 1.0,
|
| 354 |
+
"xcopa_qu": 1.0,
|
| 355 |
+
"xcopa_sw": 1.0,
|
| 356 |
+
"xcopa_ta": 1.0,
|
| 357 |
+
"xcopa_th": 1.0,
|
| 358 |
+
"xcopa_tr": 1.0,
|
| 359 |
+
"xcopa_vi": 1.0,
|
| 360 |
+
"xcopa_zh": 1.0
|
| 361 |
+
},
|
| 362 |
+
"n-shot": {
|
| 363 |
+
"xcopa": 0,
|
| 364 |
+
"xcopa_et": 0,
|
| 365 |
+
"xcopa_ht": 0,
|
| 366 |
+
"xcopa_id": 0,
|
| 367 |
+
"xcopa_it": 0,
|
| 368 |
+
"xcopa_qu": 0,
|
| 369 |
+
"xcopa_sw": 0,
|
| 370 |
+
"xcopa_ta": 0,
|
| 371 |
+
"xcopa_th": 0,
|
| 372 |
+
"xcopa_tr": 0,
|
| 373 |
+
"xcopa_vi": 0,
|
| 374 |
+
"xcopa_zh": 0
|
| 375 |
+
},
|
| 376 |
+
"config": {
|
| 377 |
+
"model": "hf",
|
| 378 |
+
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,trust_remote_code=True",
|
| 379 |
+
"batch_size": "auto",
|
| 380 |
+
"batch_sizes": [
|
| 381 |
+
64
|
| 382 |
+
],
|
| 383 |
+
"device": null,
|
| 384 |
+
"use_cache": null,
|
| 385 |
+
"limit": null,
|
| 386 |
+
"bootstrap_iters": 100000,
|
| 387 |
+
"gen_kwargs": null
|
| 388 |
+
},
|
| 389 |
+
"git_hash": "da066fa"
|
| 390 |
+
}
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30f3cb504864db9f7add06643ae4c203f64cf10d30b902c6a558f68150dc087b
|
| 3 |
+
size 57837
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:53cb9d2721f0bd707fa9156e6ff3ea03f709cac46aa1b4db7a22959b46805883
|
| 3 |
+
size 7130003
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
|
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"xnli": {
|
| 4 |
+
"acc,none": 0.43175368139223563,
|
| 5 |
+
"acc_stderr,none": 0.0565098070106032,
|
| 6 |
+
"alias": "xnli"
|
| 7 |
+
},
|
| 8 |
+
"xnli_ar": {
|
| 9 |
+
"acc,none": 0.334136546184739,
|
| 10 |
+
"acc_stderr,none": 0.009454577602463621,
|
| 11 |
+
"alias": " - xnli_ar"
|
| 12 |
+
},
|
| 13 |
+
"xnli_bg": {
|
| 14 |
+
"acc,none": 0.4534136546184739,
|
| 15 |
+
"acc_stderr,none": 0.009978476483838962,
|
| 16 |
+
"alias": " - xnli_bg"
|
| 17 |
+
},
|
| 18 |
+
"xnli_de": {
|
| 19 |
+
"acc,none": 0.5012048192771085,
|
| 20 |
+
"acc_stderr,none": 0.01002204377131557,
|
| 21 |
+
"alias": " - xnli_de"
|
| 22 |
+
},
|
| 23 |
+
"xnli_el": {
|
| 24 |
+
"acc,none": 0.41365461847389556,
|
| 25 |
+
"acc_stderr,none": 0.009871502159099366,
|
| 26 |
+
"alias": " - xnli_el"
|
| 27 |
+
},
|
| 28 |
+
"xnli_en": {
|
| 29 |
+
"acc,none": 0.5690763052208835,
|
| 30 |
+
"acc_stderr,none": 0.009925970741520641,
|
| 31 |
+
"alias": " - xnli_en"
|
| 32 |
+
},
|
| 33 |
+
"xnli_es": {
|
| 34 |
+
"acc,none": 0.4562248995983936,
|
| 35 |
+
"acc_stderr,none": 0.009983589197693925,
|
| 36 |
+
"alias": " - xnli_es"
|
| 37 |
+
},
|
| 38 |
+
"xnli_fr": {
|
| 39 |
+
"acc,none": 0.5100401606425703,
|
| 40 |
+
"acc_stderr,none": 0.010020052116889137,
|
| 41 |
+
"alias": " - xnli_fr"
|
| 42 |
+
},
|
| 43 |
+
"xnli_hi": {
|
| 44 |
+
"acc,none": 0.42650602409638555,
|
| 45 |
+
"acc_stderr,none": 0.009913215943570534,
|
| 46 |
+
"alias": " - xnli_hi"
|
| 47 |
+
},
|
| 48 |
+
"xnli_ru": {
|
| 49 |
+
"acc,none": 0.4967871485943775,
|
| 50 |
+
"acc_stderr,none": 0.010021865961119557,
|
| 51 |
+
"alias": " - xnli_ru"
|
| 52 |
+
},
|
| 53 |
+
"xnli_sw": {
|
| 54 |
+
"acc,none": 0.363855421686747,
|
| 55 |
+
"acc_stderr,none": 0.009643393577626719,
|
| 56 |
+
"alias": " - xnli_sw"
|
| 57 |
+
},
|
| 58 |
+
"xnli_th": {
|
| 59 |
+
"acc,none": 0.38835341365461845,
|
| 60 |
+
"acc_stderr,none": 0.009769028875673285,
|
| 61 |
+
"alias": " - xnli_th"
|
| 62 |
+
},
|
| 63 |
+
"xnli_tr": {
|
| 64 |
+
"acc,none": 0.43654618473895584,
|
| 65 |
+
"acc_stderr,none": 0.009941039791133128,
|
| 66 |
+
"alias": " - xnli_tr"
|
| 67 |
+
},
|
| 68 |
+
"xnli_ur": {
|
| 69 |
+
"acc,none": 0.3381526104417671,
|
| 70 |
+
"acc_stderr,none": 0.009482500057981031,
|
| 71 |
+
"alias": " - xnli_ur"
|
| 72 |
+
},
|
| 73 |
+
"xnli_vi": {
|
| 74 |
+
"acc,none": 0.41244979919678715,
|
| 75 |
+
"acc_stderr,none": 0.009867237678555586,
|
| 76 |
+
"alias": " - xnli_vi"
|
| 77 |
+
},
|
| 78 |
+
"xnli_zh": {
|
| 79 |
+
"acc,none": 0.3759036144578313,
|
| 80 |
+
"acc_stderr,none": 0.00970848885066604,
|
| 81 |
+
"alias": " - xnli_zh"
|
| 82 |
+
}
|
| 83 |
+
},
|
| 84 |
+
"groups": {
|
| 85 |
+
"xnli": {
|
| 86 |
+
"acc,none": 0.43175368139223563,
|
| 87 |
+
"acc_stderr,none": 0.0565098070106032,
|
| 88 |
+
"alias": "xnli"
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
"configs": {
|
| 92 |
+
"xnli_ar": {
|
| 93 |
+
"task": "xnli_ar",
|
| 94 |
+
"group": "xnli",
|
| 95 |
+
"dataset_path": "xnli",
|
| 96 |
+
"dataset_name": "ar",
|
| 97 |
+
"training_split": "train",
|
| 98 |
+
"validation_split": "validation",
|
| 99 |
+
"doc_to_text": "",
|
| 100 |
+
"doc_to_target": "label",
|
| 101 |
+
"doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}",
|
| 102 |
+
"description": "",
|
| 103 |
+
"target_delimiter": " ",
|
| 104 |
+
"fewshot_delimiter": "\n\n",
|
| 105 |
+
"metric_list": [
|
| 106 |
+
{
|
| 107 |
+
"metric": "acc",
|
| 108 |
+
"aggregation": "mean",
|
| 109 |
+
"higher_is_better": true
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"output_type": "multiple_choice",
|
| 113 |
+
"repeats": 1,
|
| 114 |
+
"should_decontaminate": false,
|
| 115 |
+
"metadata": {
|
| 116 |
+
"version": 1.0
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"xnli_bg": {
|
| 120 |
+
"task": "xnli_bg",
|
| 121 |
+
"group": "xnli",
|
| 122 |
+
"dataset_path": "xnli",
|
| 123 |
+
"dataset_name": "bg",
|
| 124 |
+
"training_split": "train",
|
| 125 |
+
"validation_split": "validation",
|
| 126 |
+
"doc_to_text": "",
|
| 127 |
+
"doc_to_target": "label",
|
| 128 |
+
"doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}",
|
| 129 |
+
"description": "",
|
| 130 |
+
"target_delimiter": " ",
|
| 131 |
+
"fewshot_delimiter": "\n\n",
|
| 132 |
+
"metric_list": [
|
| 133 |
+
{
|
| 134 |
+
"metric": "acc",
|
| 135 |
+
"aggregation": "mean",
|
| 136 |
+
"higher_is_better": true
|
| 137 |
+
}
|
| 138 |
+
],
|
| 139 |
+
"output_type": "multiple_choice",
|
| 140 |
+
"repeats": 1,
|
| 141 |
+
"should_decontaminate": false,
|
| 142 |
+
"metadata": {
|
| 143 |
+
"version": 1.0
|
| 144 |
+
}
|
| 145 |
+
},
|
| 146 |
+
"xnli_de": {
|
| 147 |
+
"task": "xnli_de",
|
| 148 |
+
"group": "xnli",
|
| 149 |
+
"dataset_path": "xnli",
|
| 150 |
+
"dataset_name": "de",
|
| 151 |
+
"training_split": "train",
|
| 152 |
+
"validation_split": "validation",
|
| 153 |
+
"doc_to_text": "",
|
| 154 |
+
"doc_to_target": "label",
|
| 155 |
+
"doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}",
|
| 156 |
+
"description": "",
|
| 157 |
+
"target_delimiter": " ",
|
| 158 |
+
"fewshot_delimiter": "\n\n",
|
| 159 |
+
"metric_list": [
|
| 160 |
+
{
|
| 161 |
+
"metric": "acc",
|
| 162 |
+
"aggregation": "mean",
|
| 163 |
+
"higher_is_better": true
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"output_type": "multiple_choice",
|
| 167 |
+
"repeats": 1,
|
| 168 |
+
"should_decontaminate": false,
|
| 169 |
+
"metadata": {
|
| 170 |
+
"version": 1.0
|
| 171 |
+
}
|
| 172 |
+
},
|
| 173 |
+
"xnli_el": {
|
| 174 |
+
"task": "xnli_el",
|
| 175 |
+
"group": "xnli",
|
| 176 |
+
"dataset_path": "xnli",
|
| 177 |
+
"dataset_name": "el",
|
| 178 |
+
"training_split": "train",
|
| 179 |
+
"validation_split": "validation",
|
| 180 |
+
"doc_to_text": "",
|
| 181 |
+
"doc_to_target": "label",
|
| 182 |
+
"doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}",
|
| 183 |
+
"description": "",
|
| 184 |
+
"target_delimiter": " ",
|
| 185 |
+
"fewshot_delimiter": "\n\n",
|
| 186 |
+
"metric_list": [
|
| 187 |
+
{
|
| 188 |
+
"metric": "acc",
|
| 189 |
+
"aggregation": "mean",
|
| 190 |
+
"higher_is_better": true
|
| 191 |
+
}
|
| 192 |
+
],
|
| 193 |
+
"output_type": "multiple_choice",
|
| 194 |
+
"repeats": 1,
|
| 195 |
+
"should_decontaminate": false,
|
| 196 |
+
"metadata": {
|
| 197 |
+
"version": 1.0
|
| 198 |
+
}
|
| 199 |
+
},
|
| 200 |
+
"xnli_en": {
|
| 201 |
+
"task": "xnli_en",
|
| 202 |
+
"group": "xnli",
|
| 203 |
+
"dataset_path": "xnli",
|
| 204 |
+
"dataset_name": "en",
|
| 205 |
+
"training_split": "train",
|
| 206 |
+
"validation_split": "validation",
|
| 207 |
+
"doc_to_text": "",
|
| 208 |
+
"doc_to_target": "label",
|
| 209 |
+
"doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}",
|
| 210 |
+
"description": "",
|
| 211 |
+
"target_delimiter": " ",
|
| 212 |
+
"fewshot_delimiter": "\n\n",
|
| 213 |
+
"metric_list": [
|
| 214 |
+
{
|
| 215 |
+
"metric": "acc",
|
| 216 |
+
"aggregation": "mean",
|
| 217 |
+
"higher_is_better": true
|
| 218 |
+
}
|
| 219 |
+
],
|
| 220 |
+
"output_type": "multiple_choice",
|
| 221 |
+
"repeats": 1,
|
| 222 |
+
"should_decontaminate": false,
|
| 223 |
+
"metadata": {
|
| 224 |
+
"version": 1.0
|
| 225 |
+
}
|
| 226 |
+
},
|
| 227 |
+
"xnli_es": {
|
| 228 |
+
"task": "xnli_es",
|
| 229 |
+
"group": "xnli",
|
| 230 |
+
"dataset_path": "xnli",
|
| 231 |
+
"dataset_name": "es",
|
| 232 |
+
"training_split": "train",
|
| 233 |
+
"validation_split": "validation",
|
| 234 |
+
"doc_to_text": "",
|
| 235 |
+
"doc_to_target": "label",
|
| 236 |
+
"doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}",
|
| 237 |
+
"description": "",
|
| 238 |
+
"target_delimiter": " ",
|
| 239 |
+
"fewshot_delimiter": "\n\n",
|
| 240 |
+
"metric_list": [
|
| 241 |
+
{
|
| 242 |
+
"metric": "acc",
|
| 243 |
+
"aggregation": "mean",
|
| 244 |
+
"higher_is_better": true
|
| 245 |
+
}
|
| 246 |
+
],
|
| 247 |
+
"output_type": "multiple_choice",
|
| 248 |
+
"repeats": 1,
|
| 249 |
+
"should_decontaminate": false,
|
| 250 |
+
"metadata": {
|
| 251 |
+
"version": 1.0
|
| 252 |
+
}
|
| 253 |
+
},
|
| 254 |
+
"xnli_fr": {
|
| 255 |
+
"task": "xnli_fr",
|
| 256 |
+
"group": "xnli",
|
| 257 |
+
"dataset_path": "xnli",
|
| 258 |
+
"dataset_name": "fr",
|
| 259 |
+
"training_split": "train",
|
| 260 |
+
"validation_split": "validation",
|
| 261 |
+
"doc_to_text": "",
|
| 262 |
+
"doc_to_target": "label",
|
| 263 |
+
"doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}",
|
| 264 |
+
"description": "",
|
| 265 |
+
"target_delimiter": " ",
|
| 266 |
+
"fewshot_delimiter": "\n\n",
|
| 267 |
+
"metric_list": [
|
| 268 |
+
{
|
| 269 |
+
"metric": "acc",
|
| 270 |
+
"aggregation": "mean",
|
| 271 |
+
"higher_is_better": true
|
| 272 |
+
}
|
| 273 |
+
],
|
| 274 |
+
"output_type": "multiple_choice",
|
| 275 |
+
"repeats": 1,
|
| 276 |
+
"should_decontaminate": false,
|
| 277 |
+
"metadata": {
|
| 278 |
+
"version": 1.0
|
| 279 |
+
}
|
| 280 |
+
},
|
| 281 |
+
"xnli_hi": {
|
| 282 |
+
"task": "xnli_hi",
|
| 283 |
+
"group": "xnli",
|
| 284 |
+
"dataset_path": "xnli",
|
| 285 |
+
"dataset_name": "hi",
|
| 286 |
+
"training_split": "train",
|
| 287 |
+
"validation_split": "validation",
|
| 288 |
+
"doc_to_text": "",
|
| 289 |
+
"doc_to_target": "label",
|
| 290 |
+
"doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}",
|
| 291 |
+
"description": "",
|
| 292 |
+
"target_delimiter": " ",
|
| 293 |
+
"fewshot_delimiter": "\n\n",
|
| 294 |
+
"metric_list": [
|
| 295 |
+
{
|
| 296 |
+
"metric": "acc",
|
| 297 |
+
"aggregation": "mean",
|
| 298 |
+
"higher_is_better": true
|
| 299 |
+
}
|
| 300 |
+
],
|
| 301 |
+
"output_type": "multiple_choice",
|
| 302 |
+
"repeats": 1,
|
| 303 |
+
"should_decontaminate": false,
|
| 304 |
+
"metadata": {
|
| 305 |
+
"version": 1.0
|
| 306 |
+
}
|
| 307 |
+
},
|
| 308 |
+
"xnli_ru": {
|
| 309 |
+
"task": "xnli_ru",
|
| 310 |
+
"group": "xnli",
|
| 311 |
+
"dataset_path": "xnli",
|
| 312 |
+
"dataset_name": "ru",
|
| 313 |
+
"training_split": "train",
|
| 314 |
+
"validation_split": "validation",
|
| 315 |
+
"doc_to_text": "",
|
| 316 |
+
"doc_to_target": "label",
|
| 317 |
+
"doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}",
|
| 318 |
+
"description": "",
|
| 319 |
+
"target_delimiter": " ",
|
| 320 |
+
"fewshot_delimiter": "\n\n",
|
| 321 |
+
"metric_list": [
|
| 322 |
+
{
|
| 323 |
+
"metric": "acc",
|
| 324 |
+
"aggregation": "mean",
|
| 325 |
+
"higher_is_better": true
|
| 326 |
+
}
|
| 327 |
+
],
|
| 328 |
+
"output_type": "multiple_choice",
|
| 329 |
+
"repeats": 1,
|
| 330 |
+
"should_decontaminate": false,
|
| 331 |
+
"metadata": {
|
| 332 |
+
"version": 1.0
|
| 333 |
+
}
|
| 334 |
+
},
|
| 335 |
+
"xnli_sw": {
|
| 336 |
+
"task": "xnli_sw",
|
| 337 |
+
"group": "xnli",
|
| 338 |
+
"dataset_path": "xnli",
|
| 339 |
+
"dataset_name": "sw",
|
| 340 |
+
"training_split": "train",
|
| 341 |
+
"validation_split": "validation",
|
| 342 |
+
"doc_to_text": "",
|
| 343 |
+
"doc_to_target": "label",
|
| 344 |
+
"doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}",
|
| 345 |
+
"description": "",
|
| 346 |
+
"target_delimiter": " ",
|
| 347 |
+
"fewshot_delimiter": "\n\n",
|
| 348 |
+
"metric_list": [
|
| 349 |
+
{
|
| 350 |
+
"metric": "acc",
|
| 351 |
+
"aggregation": "mean",
|
| 352 |
+
"higher_is_better": true
|
| 353 |
+
}
|
| 354 |
+
],
|
| 355 |
+
"output_type": "multiple_choice",
|
| 356 |
+
"repeats": 1,
|
| 357 |
+
"should_decontaminate": false,
|
| 358 |
+
"metadata": {
|
| 359 |
+
"version": 1.0
|
| 360 |
+
}
|
| 361 |
+
},
|
| 362 |
+
"xnli_th": {
|
| 363 |
+
"task": "xnli_th",
|
| 364 |
+
"group": "xnli",
|
| 365 |
+
"dataset_path": "xnli",
|
| 366 |
+
"dataset_name": "th",
|
| 367 |
+
"training_split": "train",
|
| 368 |
+
"validation_split": "validation",
|
| 369 |
+
"doc_to_text": "",
|
| 370 |
+
"doc_to_target": "label",
|
| 371 |
+
"doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}",
|
| 372 |
+
"description": "",
|
| 373 |
+
"target_delimiter": " ",
|
| 374 |
+
"fewshot_delimiter": "\n\n",
|
| 375 |
+
"metric_list": [
|
| 376 |
+
{
|
| 377 |
+
"metric": "acc",
|
| 378 |
+
"aggregation": "mean",
|
| 379 |
+
"higher_is_better": true
|
| 380 |
+
}
|
| 381 |
+
],
|
| 382 |
+
"output_type": "multiple_choice",
|
| 383 |
+
"repeats": 1,
|
| 384 |
+
"should_decontaminate": false,
|
| 385 |
+
"metadata": {
|
| 386 |
+
"version": 1.0
|
| 387 |
+
}
|
| 388 |
+
},
|
| 389 |
+
"xnli_tr": {
|
| 390 |
+
"task": "xnli_tr",
|
| 391 |
+
"group": "xnli",
|
| 392 |
+
"dataset_path": "xnli",
|
| 393 |
+
"dataset_name": "tr",
|
| 394 |
+
"training_split": "train",
|
| 395 |
+
"validation_split": "validation",
|
| 396 |
+
"doc_to_text": "",
|
| 397 |
+
"doc_to_target": "label",
|
| 398 |
+
"doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}",
|
| 399 |
+
"description": "",
|
| 400 |
+
"target_delimiter": " ",
|
| 401 |
+
"fewshot_delimiter": "\n\n",
|
| 402 |
+
"metric_list": [
|
| 403 |
+
{
|
| 404 |
+
"metric": "acc",
|
| 405 |
+
"aggregation": "mean",
|
| 406 |
+
"higher_is_better": true
|
| 407 |
+
}
|
| 408 |
+
],
|
| 409 |
+
"output_type": "multiple_choice",
|
| 410 |
+
"repeats": 1,
|
| 411 |
+
"should_decontaminate": false,
|
| 412 |
+
"metadata": {
|
| 413 |
+
"version": 1.0
|
| 414 |
+
}
|
| 415 |
+
},
|
| 416 |
+
"xnli_ur": {
|
| 417 |
+
"task": "xnli_ur",
|
| 418 |
+
"group": "xnli",
|
| 419 |
+
"dataset_path": "xnli",
|
| 420 |
+
"dataset_name": "ur",
|
| 421 |
+
"training_split": "train",
|
| 422 |
+
"validation_split": "validation",
|
| 423 |
+
"doc_to_text": "",
|
| 424 |
+
"doc_to_target": "label",
|
| 425 |
+
"doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}",
|
| 426 |
+
"description": "",
|
| 427 |
+
"target_delimiter": " ",
|
| 428 |
+
"fewshot_delimiter": "\n\n",
|
| 429 |
+
"metric_list": [
|
| 430 |
+
{
|
| 431 |
+
"metric": "acc",
|
| 432 |
+
"aggregation": "mean",
|
| 433 |
+
"higher_is_better": true
|
| 434 |
+
}
|
| 435 |
+
],
|
| 436 |
+
"output_type": "multiple_choice",
|
| 437 |
+
"repeats": 1,
|
| 438 |
+
"should_decontaminate": false,
|
| 439 |
+
"metadata": {
|
| 440 |
+
"version": 1.0
|
| 441 |
+
}
|
| 442 |
+
},
|
| 443 |
+
"xnli_vi": {
|
| 444 |
+
"task": "xnli_vi",
|
| 445 |
+
"group": "xnli",
|
| 446 |
+
"dataset_path": "xnli",
|
| 447 |
+
"dataset_name": "vi",
|
| 448 |
+
"training_split": "train",
|
| 449 |
+
"validation_split": "validation",
|
| 450 |
+
"doc_to_text": "",
|
| 451 |
+
"doc_to_target": "label",
|
| 452 |
+
"doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}",
|
| 453 |
+
"description": "",
|
| 454 |
+
"target_delimiter": " ",
|
| 455 |
+
"fewshot_delimiter": "\n\n",
|
| 456 |
+
"metric_list": [
|
| 457 |
+
{
|
| 458 |
+
"metric": "acc",
|
| 459 |
+
"aggregation": "mean",
|
| 460 |
+
"higher_is_better": true
|
| 461 |
+
}
|
| 462 |
+
],
|
| 463 |
+
"output_type": "multiple_choice",
|
| 464 |
+
"repeats": 1,
|
| 465 |
+
"should_decontaminate": false,
|
| 466 |
+
"metadata": {
|
| 467 |
+
"version": 1.0
|
| 468 |
+
}
|
| 469 |
+
},
|
| 470 |
+
"xnli_zh": {
|
| 471 |
+
"task": "xnli_zh",
|
| 472 |
+
"group": "xnli",
|
| 473 |
+
"dataset_path": "xnli",
|
| 474 |
+
"dataset_name": "zh",
|
| 475 |
+
"training_split": "train",
|
| 476 |
+
"validation_split": "validation",
|
| 477 |
+
"doc_to_text": "",
|
| 478 |
+
"doc_to_target": "label",
|
| 479 |
+
"doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}",
|
| 480 |
+
"description": "",
|
| 481 |
+
"target_delimiter": " ",
|
| 482 |
+
"fewshot_delimiter": "\n\n",
|
| 483 |
+
"metric_list": [
|
| 484 |
+
{
|
| 485 |
+
"metric": "acc",
|
| 486 |
+
"aggregation": "mean",
|
| 487 |
+
"higher_is_better": true
|
| 488 |
+
}
|
| 489 |
+
],
|
| 490 |
+
"output_type": "multiple_choice",
|
| 491 |
+
"repeats": 1,
|
| 492 |
+
"should_decontaminate": false,
|
| 493 |
+
"metadata": {
|
| 494 |
+
"version": 1.0
|
| 495 |
+
}
|
| 496 |
+
}
|
| 497 |
+
},
|
| 498 |
+
"versions": {
|
| 499 |
+
"xnli": "N/A",
|
| 500 |
+
"xnli_ar": 1.0,
|
| 501 |
+
"xnli_bg": 1.0,
|
| 502 |
+
"xnli_de": 1.0,
|
| 503 |
+
"xnli_el": 1.0,
|
| 504 |
+
"xnli_en": 1.0,
|
| 505 |
+
"xnli_es": 1.0,
|
| 506 |
+
"xnli_fr": 1.0,
|
| 507 |
+
"xnli_hi": 1.0,
|
| 508 |
+
"xnli_ru": 1.0,
|
| 509 |
+
"xnli_sw": 1.0,
|
| 510 |
+
"xnli_th": 1.0,
|
| 511 |
+
"xnli_tr": 1.0,
|
| 512 |
+
"xnli_ur": 1.0,
|
| 513 |
+
"xnli_vi": 1.0,
|
| 514 |
+
"xnli_zh": 1.0
|
| 515 |
+
},
|
| 516 |
+
"n-shot": {
|
| 517 |
+
"xnli": 0,
|
| 518 |
+
"xnli_ar": 0,
|
| 519 |
+
"xnli_bg": 0,
|
| 520 |
+
"xnli_de": 0,
|
| 521 |
+
"xnli_el": 0,
|
| 522 |
+
"xnli_en": 0,
|
| 523 |
+
"xnli_es": 0,
|
| 524 |
+
"xnli_fr": 0,
|
| 525 |
+
"xnli_hi": 0,
|
| 526 |
+
"xnli_ru": 0,
|
| 527 |
+
"xnli_sw": 0,
|
| 528 |
+
"xnli_th": 0,
|
| 529 |
+
"xnli_tr": 0,
|
| 530 |
+
"xnli_ur": 0,
|
| 531 |
+
"xnli_vi": 0,
|
| 532 |
+
"xnli_zh": 0
|
| 533 |
+
},
|
| 534 |
+
"config": {
|
| 535 |
+
"model": "hf",
|
| 536 |
+
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,trust_remote_code=True",
|
| 537 |
+
"batch_size": "auto",
|
| 538 |
+
"batch_sizes": [
|
| 539 |
+
32
|
| 540 |
+
],
|
| 541 |
+
"device": null,
|
| 542 |
+
"use_cache": null,
|
| 543 |
+
"limit": null,
|
| 544 |
+
"bootstrap_iters": 100000,
|
| 545 |
+
"gen_kwargs": null
|
| 546 |
+
},
|
| 547 |
+
"git_hash": "da066fa"
|
| 548 |
+
}
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:492790bdadf7b97768c2ff13c716b404c0c3b61c9948b009484383b66ba60d0e
|
| 3 |
+
size 86788
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a7837989ff3bd6947479effbf479ee802d244622e7d23136b0d7a9c91309172
|
| 3 |
+
size 4416592
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"xstorycloze": {
|
| 4 |
+
"acc,none": 0.5916611515552614,
|
| 5 |
+
"acc_stderr,none": 0.07711658992261772,
|
| 6 |
+
"alias": "xstorycloze"
|
| 7 |
+
},
|
| 8 |
+
"xstorycloze_ar": {
|
| 9 |
+
"acc,none": 0.5294506949040371,
|
| 10 |
+
"acc_stderr,none": 0.012844785490016997,
|
| 11 |
+
"alias": " - xstorycloze_ar"
|
| 12 |
+
},
|
| 13 |
+
"xstorycloze_en": {
|
| 14 |
+
"acc,none": 0.786896095301125,
|
| 15 |
+
"acc_stderr,none": 0.010538187590034574,
|
| 16 |
+
"alias": " - xstorycloze_en"
|
| 17 |
+
},
|
| 18 |
+
"xstorycloze_es": {
|
| 19 |
+
"acc,none": 0.6909331568497684,
|
| 20 |
+
"acc_stderr,none": 0.011892023305070085,
|
| 21 |
+
"alias": " - xstorycloze_es"
|
| 22 |
+
},
|
| 23 |
+
"xstorycloze_eu": {
|
| 24 |
+
"acc,none": 0.5109199205823958,
|
| 25 |
+
"acc_stderr,none": 0.012864056278255043,
|
| 26 |
+
"alias": " - xstorycloze_eu"
|
| 27 |
+
},
|
| 28 |
+
"xstorycloze_hi": {
|
| 29 |
+
"acc,none": 0.5539377895433488,
|
| 30 |
+
"acc_stderr,none": 0.012792037953589649,
|
| 31 |
+
"alias": " - xstorycloze_hi"
|
| 32 |
+
},
|
| 33 |
+
"xstorycloze_id": {
|
| 34 |
+
"acc,none": 0.5936465916611515,
|
| 35 |
+
"acc_stderr,none": 0.012639429420389871,
|
| 36 |
+
"alias": " - xstorycloze_id"
|
| 37 |
+
},
|
| 38 |
+
"xstorycloze_my": {
|
| 39 |
+
"acc,none": 0.4884182660489742,
|
| 40 |
+
"acc_stderr,none": 0.012863672949335892,
|
| 41 |
+
"alias": " - xstorycloze_my"
|
| 42 |
+
},
|
| 43 |
+
"xstorycloze_ru": {
|
| 44 |
+
"acc,none": 0.6651224354731966,
|
| 45 |
+
"acc_stderr,none": 0.012145219027833156,
|
| 46 |
+
"alias": " - xstorycloze_ru"
|
| 47 |
+
},
|
| 48 |
+
"xstorycloze_sw": {
|
| 49 |
+
"acc,none": 0.5129053606882858,
|
| 50 |
+
"acc_stderr,none": 0.012862838605728476,
|
| 51 |
+
"alias": " - xstorycloze_sw"
|
| 52 |
+
},
|
| 53 |
+
"xstorycloze_te": {
|
| 54 |
+
"acc,none": 0.5413633355393779,
|
| 55 |
+
"acc_stderr,none": 0.012823020340169815,
|
| 56 |
+
"alias": " - xstorycloze_te"
|
| 57 |
+
},
|
| 58 |
+
"xstorycloze_zh": {
|
| 59 |
+
"acc,none": 0.6346790205162144,
|
| 60 |
+
"acc_stderr,none": 0.012391557728373984,
|
| 61 |
+
"alias": " - xstorycloze_zh"
|
| 62 |
+
}
|
| 63 |
+
},
|
| 64 |
+
"groups": {
|
| 65 |
+
"xstorycloze": {
|
| 66 |
+
"acc,none": 0.5916611515552614,
|
| 67 |
+
"acc_stderr,none": 0.07711658992261772,
|
| 68 |
+
"alias": "xstorycloze"
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
"configs": {
|
| 72 |
+
"xstorycloze_ar": {
|
| 73 |
+
"task": "xstorycloze_ar",
|
| 74 |
+
"group": "xstorycloze",
|
| 75 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 76 |
+
"dataset_name": "ar",
|
| 77 |
+
"training_split": "train",
|
| 78 |
+
"validation_split": "eval",
|
| 79 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 80 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 81 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 82 |
+
"description": "",
|
| 83 |
+
"target_delimiter": " ",
|
| 84 |
+
"fewshot_delimiter": "\n\n",
|
| 85 |
+
"metric_list": [
|
| 86 |
+
{
|
| 87 |
+
"metric": "acc",
|
| 88 |
+
"aggregation": "mean",
|
| 89 |
+
"higher_is_better": true
|
| 90 |
+
}
|
| 91 |
+
],
|
| 92 |
+
"output_type": "multiple_choice",
|
| 93 |
+
"repeats": 1,
|
| 94 |
+
"should_decontaminate": true,
|
| 95 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 96 |
+
"metadata": {
|
| 97 |
+
"version": 1.0
|
| 98 |
+
}
|
| 99 |
+
},
|
| 100 |
+
"xstorycloze_en": {
|
| 101 |
+
"task": "xstorycloze_en",
|
| 102 |
+
"group": "xstorycloze",
|
| 103 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 104 |
+
"dataset_name": "en",
|
| 105 |
+
"training_split": "train",
|
| 106 |
+
"validation_split": "eval",
|
| 107 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 108 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 109 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 110 |
+
"description": "",
|
| 111 |
+
"target_delimiter": " ",
|
| 112 |
+
"fewshot_delimiter": "\n\n",
|
| 113 |
+
"metric_list": [
|
| 114 |
+
{
|
| 115 |
+
"metric": "acc",
|
| 116 |
+
"aggregation": "mean",
|
| 117 |
+
"higher_is_better": true
|
| 118 |
+
}
|
| 119 |
+
],
|
| 120 |
+
"output_type": "multiple_choice",
|
| 121 |
+
"repeats": 1,
|
| 122 |
+
"should_decontaminate": true,
|
| 123 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 124 |
+
"metadata": {
|
| 125 |
+
"version": 1.0
|
| 126 |
+
}
|
| 127 |
+
},
|
| 128 |
+
"xstorycloze_es": {
|
| 129 |
+
"task": "xstorycloze_es",
|
| 130 |
+
"group": "xstorycloze",
|
| 131 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 132 |
+
"dataset_name": "es",
|
| 133 |
+
"training_split": "train",
|
| 134 |
+
"validation_split": "eval",
|
| 135 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 136 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 137 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 138 |
+
"description": "",
|
| 139 |
+
"target_delimiter": " ",
|
| 140 |
+
"fewshot_delimiter": "\n\n",
|
| 141 |
+
"metric_list": [
|
| 142 |
+
{
|
| 143 |
+
"metric": "acc",
|
| 144 |
+
"aggregation": "mean",
|
| 145 |
+
"higher_is_better": true
|
| 146 |
+
}
|
| 147 |
+
],
|
| 148 |
+
"output_type": "multiple_choice",
|
| 149 |
+
"repeats": 1,
|
| 150 |
+
"should_decontaminate": true,
|
| 151 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 152 |
+
"metadata": {
|
| 153 |
+
"version": 1.0
|
| 154 |
+
}
|
| 155 |
+
},
|
| 156 |
+
"xstorycloze_eu": {
|
| 157 |
+
"task": "xstorycloze_eu",
|
| 158 |
+
"group": "xstorycloze",
|
| 159 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 160 |
+
"dataset_name": "eu",
|
| 161 |
+
"training_split": "train",
|
| 162 |
+
"validation_split": "eval",
|
| 163 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 164 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 165 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 166 |
+
"description": "",
|
| 167 |
+
"target_delimiter": " ",
|
| 168 |
+
"fewshot_delimiter": "\n\n",
|
| 169 |
+
"metric_list": [
|
| 170 |
+
{
|
| 171 |
+
"metric": "acc",
|
| 172 |
+
"aggregation": "mean",
|
| 173 |
+
"higher_is_better": true
|
| 174 |
+
}
|
| 175 |
+
],
|
| 176 |
+
"output_type": "multiple_choice",
|
| 177 |
+
"repeats": 1,
|
| 178 |
+
"should_decontaminate": true,
|
| 179 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 180 |
+
"metadata": {
|
| 181 |
+
"version": 1.0
|
| 182 |
+
}
|
| 183 |
+
},
|
| 184 |
+
"xstorycloze_hi": {
|
| 185 |
+
"task": "xstorycloze_hi",
|
| 186 |
+
"group": "xstorycloze",
|
| 187 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 188 |
+
"dataset_name": "hi",
|
| 189 |
+
"training_split": "train",
|
| 190 |
+
"validation_split": "eval",
|
| 191 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 192 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 193 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 194 |
+
"description": "",
|
| 195 |
+
"target_delimiter": " ",
|
| 196 |
+
"fewshot_delimiter": "\n\n",
|
| 197 |
+
"metric_list": [
|
| 198 |
+
{
|
| 199 |
+
"metric": "acc",
|
| 200 |
+
"aggregation": "mean",
|
| 201 |
+
"higher_is_better": true
|
| 202 |
+
}
|
| 203 |
+
],
|
| 204 |
+
"output_type": "multiple_choice",
|
| 205 |
+
"repeats": 1,
|
| 206 |
+
"should_decontaminate": true,
|
| 207 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 208 |
+
"metadata": {
|
| 209 |
+
"version": 1.0
|
| 210 |
+
}
|
| 211 |
+
},
|
| 212 |
+
"xstorycloze_id": {
|
| 213 |
+
"task": "xstorycloze_id",
|
| 214 |
+
"group": "xstorycloze",
|
| 215 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 216 |
+
"dataset_name": "id",
|
| 217 |
+
"training_split": "train",
|
| 218 |
+
"validation_split": "eval",
|
| 219 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 220 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 221 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 222 |
+
"description": "",
|
| 223 |
+
"target_delimiter": " ",
|
| 224 |
+
"fewshot_delimiter": "\n\n",
|
| 225 |
+
"metric_list": [
|
| 226 |
+
{
|
| 227 |
+
"metric": "acc",
|
| 228 |
+
"aggregation": "mean",
|
| 229 |
+
"higher_is_better": true
|
| 230 |
+
}
|
| 231 |
+
],
|
| 232 |
+
"output_type": "multiple_choice",
|
| 233 |
+
"repeats": 1,
|
| 234 |
+
"should_decontaminate": true,
|
| 235 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 236 |
+
"metadata": {
|
| 237 |
+
"version": 1.0
|
| 238 |
+
}
|
| 239 |
+
},
|
| 240 |
+
"xstorycloze_my": {
|
| 241 |
+
"task": "xstorycloze_my",
|
| 242 |
+
"group": "xstorycloze",
|
| 243 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 244 |
+
"dataset_name": "my",
|
| 245 |
+
"training_split": "train",
|
| 246 |
+
"validation_split": "eval",
|
| 247 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 248 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 249 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 250 |
+
"description": "",
|
| 251 |
+
"target_delimiter": " ",
|
| 252 |
+
"fewshot_delimiter": "\n\n",
|
| 253 |
+
"metric_list": [
|
| 254 |
+
{
|
| 255 |
+
"metric": "acc",
|
| 256 |
+
"aggregation": "mean",
|
| 257 |
+
"higher_is_better": true
|
| 258 |
+
}
|
| 259 |
+
],
|
| 260 |
+
"output_type": "multiple_choice",
|
| 261 |
+
"repeats": 1,
|
| 262 |
+
"should_decontaminate": true,
|
| 263 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 264 |
+
"metadata": {
|
| 265 |
+
"version": 1.0
|
| 266 |
+
}
|
| 267 |
+
},
|
| 268 |
+
"xstorycloze_ru": {
|
| 269 |
+
"task": "xstorycloze_ru",
|
| 270 |
+
"group": "xstorycloze",
|
| 271 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 272 |
+
"dataset_name": "ru",
|
| 273 |
+
"training_split": "train",
|
| 274 |
+
"validation_split": "eval",
|
| 275 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 276 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 277 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 278 |
+
"description": "",
|
| 279 |
+
"target_delimiter": " ",
|
| 280 |
+
"fewshot_delimiter": "\n\n",
|
| 281 |
+
"metric_list": [
|
| 282 |
+
{
|
| 283 |
+
"metric": "acc",
|
| 284 |
+
"aggregation": "mean",
|
| 285 |
+
"higher_is_better": true
|
| 286 |
+
}
|
| 287 |
+
],
|
| 288 |
+
"output_type": "multiple_choice",
|
| 289 |
+
"repeats": 1,
|
| 290 |
+
"should_decontaminate": true,
|
| 291 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 292 |
+
"metadata": {
|
| 293 |
+
"version": 1.0
|
| 294 |
+
}
|
| 295 |
+
},
|
| 296 |
+
"xstorycloze_sw": {
|
| 297 |
+
"task": "xstorycloze_sw",
|
| 298 |
+
"group": "xstorycloze",
|
| 299 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 300 |
+
"dataset_name": "sw",
|
| 301 |
+
"training_split": "train",
|
| 302 |
+
"validation_split": "eval",
|
| 303 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 304 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 305 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 306 |
+
"description": "",
|
| 307 |
+
"target_delimiter": " ",
|
| 308 |
+
"fewshot_delimiter": "\n\n",
|
| 309 |
+
"metric_list": [
|
| 310 |
+
{
|
| 311 |
+
"metric": "acc",
|
| 312 |
+
"aggregation": "mean",
|
| 313 |
+
"higher_is_better": true
|
| 314 |
+
}
|
| 315 |
+
],
|
| 316 |
+
"output_type": "multiple_choice",
|
| 317 |
+
"repeats": 1,
|
| 318 |
+
"should_decontaminate": true,
|
| 319 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 320 |
+
"metadata": {
|
| 321 |
+
"version": 1.0
|
| 322 |
+
}
|
| 323 |
+
},
|
| 324 |
+
"xstorycloze_te": {
|
| 325 |
+
"task": "xstorycloze_te",
|
| 326 |
+
"group": "xstorycloze",
|
| 327 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 328 |
+
"dataset_name": "te",
|
| 329 |
+
"training_split": "train",
|
| 330 |
+
"validation_split": "eval",
|
| 331 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 332 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 333 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 334 |
+
"description": "",
|
| 335 |
+
"target_delimiter": " ",
|
| 336 |
+
"fewshot_delimiter": "\n\n",
|
| 337 |
+
"metric_list": [
|
| 338 |
+
{
|
| 339 |
+
"metric": "acc",
|
| 340 |
+
"aggregation": "mean",
|
| 341 |
+
"higher_is_better": true
|
| 342 |
+
}
|
| 343 |
+
],
|
| 344 |
+
"output_type": "multiple_choice",
|
| 345 |
+
"repeats": 1,
|
| 346 |
+
"should_decontaminate": true,
|
| 347 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 348 |
+
"metadata": {
|
| 349 |
+
"version": 1.0
|
| 350 |
+
}
|
| 351 |
+
},
|
| 352 |
+
"xstorycloze_zh": {
|
| 353 |
+
"task": "xstorycloze_zh",
|
| 354 |
+
"group": "xstorycloze",
|
| 355 |
+
"dataset_path": "juletxara/xstory_cloze",
|
| 356 |
+
"dataset_name": "zh",
|
| 357 |
+
"training_split": "train",
|
| 358 |
+
"validation_split": "eval",
|
| 359 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 360 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
| 361 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
| 362 |
+
"description": "",
|
| 363 |
+
"target_delimiter": " ",
|
| 364 |
+
"fewshot_delimiter": "\n\n",
|
| 365 |
+
"metric_list": [
|
| 366 |
+
{
|
| 367 |
+
"metric": "acc",
|
| 368 |
+
"aggregation": "mean",
|
| 369 |
+
"higher_is_better": true
|
| 370 |
+
}
|
| 371 |
+
],
|
| 372 |
+
"output_type": "multiple_choice",
|
| 373 |
+
"repeats": 1,
|
| 374 |
+
"should_decontaminate": true,
|
| 375 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
| 376 |
+
"metadata": {
|
| 377 |
+
"version": 1.0
|
| 378 |
+
}
|
| 379 |
+
}
|
| 380 |
+
},
|
| 381 |
+
"versions": {
|
| 382 |
+
"xstorycloze": "N/A",
|
| 383 |
+
"xstorycloze_ar": 1.0,
|
| 384 |
+
"xstorycloze_en": 1.0,
|
| 385 |
+
"xstorycloze_es": 1.0,
|
| 386 |
+
"xstorycloze_eu": 1.0,
|
| 387 |
+
"xstorycloze_hi": 1.0,
|
| 388 |
+
"xstorycloze_id": 1.0,
|
| 389 |
+
"xstorycloze_my": 1.0,
|
| 390 |
+
"xstorycloze_ru": 1.0,
|
| 391 |
+
"xstorycloze_sw": 1.0,
|
| 392 |
+
"xstorycloze_te": 1.0,
|
| 393 |
+
"xstorycloze_zh": 1.0
|
| 394 |
+
},
|
| 395 |
+
"n-shot": {
|
| 396 |
+
"xstorycloze": 0,
|
| 397 |
+
"xstorycloze_ar": 0,
|
| 398 |
+
"xstorycloze_en": 0,
|
| 399 |
+
"xstorycloze_es": 0,
|
| 400 |
+
"xstorycloze_eu": 0,
|
| 401 |
+
"xstorycloze_hi": 0,
|
| 402 |
+
"xstorycloze_id": 0,
|
| 403 |
+
"xstorycloze_my": 0,
|
| 404 |
+
"xstorycloze_ru": 0,
|
| 405 |
+
"xstorycloze_sw": 0,
|
| 406 |
+
"xstorycloze_te": 0,
|
| 407 |
+
"xstorycloze_zh": 0
|
| 408 |
+
},
|
| 409 |
+
"config": {
|
| 410 |
+
"model": "hf",
|
| 411 |
+
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,trust_remote_code=True",
|
| 412 |
+
"batch_size": "auto",
|
| 413 |
+
"batch_sizes": [
|
| 414 |
+
16
|
| 415 |
+
],
|
| 416 |
+
"device": null,
|
| 417 |
+
"use_cache": null,
|
| 418 |
+
"limit": null,
|
| 419 |
+
"bootstrap_iters": 100000,
|
| 420 |
+
"gen_kwargs": null
|
| 421 |
+
},
|
| 422 |
+
"git_hash": "da066fa"
|
| 423 |
+
}
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df6d38d0646f70d63adbb24bde26fb5d61bac1b93646c9a2b24c62908e100155
|
| 3 |
+
size 48256
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af1d9cfd24e4be93942673a99e186e18c735daa447de7a49afb7cee3ca7eb078
|
| 3 |
+
size 606979
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"xwinograd": {
|
| 4 |
+
"acc,none": 0.8141155315801304,
|
| 5 |
+
"acc_stderr,none": 0.047153752482205775,
|
| 6 |
+
"alias": "xwinograd"
|
| 7 |
+
},
|
| 8 |
+
"xwinograd_en": {
|
| 9 |
+
"acc,none": 0.8868817204301075,
|
| 10 |
+
"acc_stderr,none": 0.0065702392696682255,
|
| 11 |
+
"alias": " - xwinograd_en"
|
| 12 |
+
},
|
| 13 |
+
"xwinograd_fr": {
|
| 14 |
+
"acc,none": 0.7469879518072289,
|
| 15 |
+
"acc_stderr,none": 0.048008758304372776,
|
| 16 |
+
"alias": " - xwinograd_fr"
|
| 17 |
+
},
|
| 18 |
+
"xwinograd_jp": {
|
| 19 |
+
"acc,none": 0.721584984358707,
|
| 20 |
+
"acc_stderr,none": 0.014481292182837467,
|
| 21 |
+
"alias": " - xwinograd_jp"
|
| 22 |
+
},
|
| 23 |
+
"xwinograd_pt": {
|
| 24 |
+
"acc,none": 0.7642585551330798,
|
| 25 |
+
"acc_stderr,none": 0.026223308206222536,
|
| 26 |
+
"alias": " - xwinograd_pt"
|
| 27 |
+
},
|
| 28 |
+
"xwinograd_ru": {
|
| 29 |
+
"acc,none": 0.6888888888888889,
|
| 30 |
+
"acc_stderr,none": 0.02612567541895451,
|
| 31 |
+
"alias": " - xwinograd_ru"
|
| 32 |
+
},
|
| 33 |
+
"xwinograd_zh": {
|
| 34 |
+
"acc,none": 0.7698412698412699,
|
| 35 |
+
"acc_stderr,none": 0.018768533005904867,
|
| 36 |
+
"alias": " - xwinograd_zh"
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"groups": {
|
| 40 |
+
"xwinograd": {
|
| 41 |
+
"acc,none": 0.8141155315801304,
|
| 42 |
+
"acc_stderr,none": 0.047153752482205775,
|
| 43 |
+
"alias": "xwinograd"
|
| 44 |
+
}
|
| 45 |
+
},
|
| 46 |
+
"configs": {
|
| 47 |
+
"xwinograd_en": {
|
| 48 |
+
"task": "xwinograd_en",
|
| 49 |
+
"group": [
|
| 50 |
+
"xwinograd"
|
| 51 |
+
],
|
| 52 |
+
"dataset_path": "Muennighoff/xwinograd",
|
| 53 |
+
"dataset_name": "en",
|
| 54 |
+
"test_split": "test",
|
| 55 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
| 56 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
| 57 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
| 58 |
+
"description": "",
|
| 59 |
+
"target_delimiter": " ",
|
| 60 |
+
"fewshot_delimiter": "\n\n",
|
| 61 |
+
"metric_list": [
|
| 62 |
+
{
|
| 63 |
+
"metric": "acc",
|
| 64 |
+
"aggregation": "mean",
|
| 65 |
+
"higher_is_better": true
|
| 66 |
+
}
|
| 67 |
+
],
|
| 68 |
+
"output_type": "multiple_choice",
|
| 69 |
+
"repeats": 1,
|
| 70 |
+
"should_decontaminate": false,
|
| 71 |
+
"metadata": {
|
| 72 |
+
"version": 1.0
|
| 73 |
+
}
|
| 74 |
+
},
|
| 75 |
+
"xwinograd_fr": {
|
| 76 |
+
"task": "xwinograd_fr",
|
| 77 |
+
"group": [
|
| 78 |
+
"xwinograd"
|
| 79 |
+
],
|
| 80 |
+
"dataset_path": "Muennighoff/xwinograd",
|
| 81 |
+
"dataset_name": "fr",
|
| 82 |
+
"test_split": "test",
|
| 83 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
| 84 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
| 85 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
| 86 |
+
"description": "",
|
| 87 |
+
"target_delimiter": " ",
|
| 88 |
+
"fewshot_delimiter": "\n\n",
|
| 89 |
+
"metric_list": [
|
| 90 |
+
{
|
| 91 |
+
"metric": "acc",
|
| 92 |
+
"aggregation": "mean",
|
| 93 |
+
"higher_is_better": true
|
| 94 |
+
}
|
| 95 |
+
],
|
| 96 |
+
"output_type": "multiple_choice",
|
| 97 |
+
"repeats": 1,
|
| 98 |
+
"should_decontaminate": false,
|
| 99 |
+
"metadata": {
|
| 100 |
+
"version": 1.0
|
| 101 |
+
}
|
| 102 |
+
},
|
| 103 |
+
"xwinograd_jp": {
|
| 104 |
+
"task": "xwinograd_jp",
|
| 105 |
+
"group": [
|
| 106 |
+
"xwinograd"
|
| 107 |
+
],
|
| 108 |
+
"dataset_path": "Muennighoff/xwinograd",
|
| 109 |
+
"dataset_name": "jp",
|
| 110 |
+
"test_split": "test",
|
| 111 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
| 112 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
| 113 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
| 114 |
+
"description": "",
|
| 115 |
+
"target_delimiter": " ",
|
| 116 |
+
"fewshot_delimiter": "\n\n",
|
| 117 |
+
"metric_list": [
|
| 118 |
+
{
|
| 119 |
+
"metric": "acc",
|
| 120 |
+
"aggregation": "mean",
|
| 121 |
+
"higher_is_better": true
|
| 122 |
+
}
|
| 123 |
+
],
|
| 124 |
+
"output_type": "multiple_choice",
|
| 125 |
+
"repeats": 1,
|
| 126 |
+
"should_decontaminate": false,
|
| 127 |
+
"metadata": {
|
| 128 |
+
"version": 1.0
|
| 129 |
+
}
|
| 130 |
+
},
|
| 131 |
+
"xwinograd_pt": {
|
| 132 |
+
"task": "xwinograd_pt",
|
| 133 |
+
"group": [
|
| 134 |
+
"xwinograd"
|
| 135 |
+
],
|
| 136 |
+
"dataset_path": "Muennighoff/xwinograd",
|
| 137 |
+
"dataset_name": "pt",
|
| 138 |
+
"test_split": "test",
|
| 139 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
| 140 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
| 141 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
| 142 |
+
"description": "",
|
| 143 |
+
"target_delimiter": " ",
|
| 144 |
+
"fewshot_delimiter": "\n\n",
|
| 145 |
+
"metric_list": [
|
| 146 |
+
{
|
| 147 |
+
"metric": "acc",
|
| 148 |
+
"aggregation": "mean",
|
| 149 |
+
"higher_is_better": true
|
| 150 |
+
}
|
| 151 |
+
],
|
| 152 |
+
"output_type": "multiple_choice",
|
| 153 |
+
"repeats": 1,
|
| 154 |
+
"should_decontaminate": false,
|
| 155 |
+
"metadata": {
|
| 156 |
+
"version": 1.0
|
| 157 |
+
}
|
| 158 |
+
},
|
| 159 |
+
"xwinograd_ru": {
|
| 160 |
+
"task": "xwinograd_ru",
|
| 161 |
+
"group": [
|
| 162 |
+
"xwinograd"
|
| 163 |
+
],
|
| 164 |
+
"dataset_path": "Muennighoff/xwinograd",
|
| 165 |
+
"dataset_name": "ru",
|
| 166 |
+
"test_split": "test",
|
| 167 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
| 168 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
| 169 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
| 170 |
+
"description": "",
|
| 171 |
+
"target_delimiter": " ",
|
| 172 |
+
"fewshot_delimiter": "\n\n",
|
| 173 |
+
"metric_list": [
|
| 174 |
+
{
|
| 175 |
+
"metric": "acc",
|
| 176 |
+
"aggregation": "mean",
|
| 177 |
+
"higher_is_better": true
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"output_type": "multiple_choice",
|
| 181 |
+
"repeats": 1,
|
| 182 |
+
"should_decontaminate": false,
|
| 183 |
+
"metadata": {
|
| 184 |
+
"version": 1.0
|
| 185 |
+
}
|
| 186 |
+
},
|
| 187 |
+
"xwinograd_zh": {
|
| 188 |
+
"task": "xwinograd_zh",
|
| 189 |
+
"group": [
|
| 190 |
+
"xwinograd"
|
| 191 |
+
],
|
| 192 |
+
"dataset_path": "Muennighoff/xwinograd",
|
| 193 |
+
"dataset_name": "zh",
|
| 194 |
+
"test_split": "test",
|
| 195 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
| 196 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
| 197 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
| 198 |
+
"description": "",
|
| 199 |
+
"target_delimiter": " ",
|
| 200 |
+
"fewshot_delimiter": "\n\n",
|
| 201 |
+
"metric_list": [
|
| 202 |
+
{
|
| 203 |
+
"metric": "acc",
|
| 204 |
+
"aggregation": "mean",
|
| 205 |
+
"higher_is_better": true
|
| 206 |
+
}
|
| 207 |
+
],
|
| 208 |
+
"output_type": "multiple_choice",
|
| 209 |
+
"repeats": 1,
|
| 210 |
+
"should_decontaminate": false,
|
| 211 |
+
"metadata": {
|
| 212 |
+
"version": 1.0
|
| 213 |
+
}
|
| 214 |
+
}
|
| 215 |
+
},
|
| 216 |
+
"versions": {
|
| 217 |
+
"xwinograd": "N/A",
|
| 218 |
+
"xwinograd_en": 1.0,
|
| 219 |
+
"xwinograd_fr": 1.0,
|
| 220 |
+
"xwinograd_jp": 1.0,
|
| 221 |
+
"xwinograd_pt": 1.0,
|
| 222 |
+
"xwinograd_ru": 1.0,
|
| 223 |
+
"xwinograd_zh": 1.0
|
| 224 |
+
},
|
| 225 |
+
"n-shot": {
|
| 226 |
+
"xwinograd": 0,
|
| 227 |
+
"xwinograd_en": 0,
|
| 228 |
+
"xwinograd_fr": 0,
|
| 229 |
+
"xwinograd_jp": 0,
|
| 230 |
+
"xwinograd_pt": 0,
|
| 231 |
+
"xwinograd_ru": 0,
|
| 232 |
+
"xwinograd_zh": 0
|
| 233 |
+
},
|
| 234 |
+
"config": {
|
| 235 |
+
"model": "hf",
|
| 236 |
+
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,dtype=bfloat16,trust_remote_code=True",
|
| 237 |
+
"batch_size": "auto",
|
| 238 |
+
"batch_sizes": [
|
| 239 |
+
64
|
| 240 |
+
],
|
| 241 |
+
"device": null,
|
| 242 |
+
"use_cache": null,
|
| 243 |
+
"limit": null,
|
| 244 |
+
"bootstrap_iters": 100000,
|
| 245 |
+
"gen_kwargs": null
|
| 246 |
+
},
|
| 247 |
+
"git_hash": "da066fa"
|
| 248 |
+
}
|
lm-eval-output/mistralai/Mistral-7B-v0.1/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aaecfc3a236a67bf03873a223bab87e1a7a735ea82304b324efc67b415d57043
|
| 3 |
+
size 35906
|