--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - language_table - openx - google_robot configs: - config_name: default data_files: data/*.parquet --- Language Table (LeRobot) — Embedding-Only Release (DINOv3 + SigLIP2 image features; EmbeddingGemma task-text features) This repository packages a re-encoded variant of [IPEC-COMMUNITY/fractal20220817_data_lerobot](https://huggingface.co/datasets/IPEC-COMMUNITY/fractal20220817_data_lerobot) where raw videos are replaced by fixed-length image embeddings, and task strings are augmented with text embeddings. All indices, splits, and semantics remain consistent with the source dataset while storage and I/O are substantially lighter. To make the dataset practical to upload/download and stream from the Hub, we also consolidated tiny per-episode Parquet files into N large Parquet shards under a single data/ folder. The file meta/sharded_index.json preserves a precise mapping from each original episode (referenced by a normalized identifier of the form data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet) to its shard path and row range, so you keep original addressing without paying the small-file tax. - Robot: google_robot - Modalities kept: states, actions, timestamps, frame/episode indices, image embeddings, task-text embeddings - Removed: - observation.images.image - License: apache-2.0 (inherits from source) ---------------------------------------------------------------- Quick Stats From meta/info.json and meta/task_text_embeddings_info.json: - Episodes: 87,212 - Frames: 3,786,400 - Tasks (unique): 599 - Chunks (original layout): 88 (chunks_size=1000) - Shards (this release): 64 Parquet files under data/ (see meta/sharded_index.json) - FPS: 3 - Image embeddings (per frame): - observation.images.image_dinov3 → float32 [1024] (DINOv3 ViT-L/16 CLS) - observation.images.image_siglip2 → float32 [768] (SigLIP2-base) - Task-text embeddings (per unique task): - embedding → float32 [768] from google/embeddinggemma-300m - Count: 599 rows (one per task) Note: This is an embedding-only package. The original pixel arrays listed under “Removed” are dropped. ----------------------------------------------------------------
Contents
. 
|-- meta/
|   |-- info.json
|   |-- sharded_index.json
|   |-- tasks.jsonl
|   |-- episodes.jsonl
|   `-- task_text_embeddings_info.json
|-- data/
|   |-- shard-00000-of-000NN.parquet
|   |-- shard-00001-of-000NN.parquet
|   |-- ...
|   `-- task_text_embeddings.parquet
`-- README.md
---------------------------------------------------------------- How This Was Generated (Reproducible Pipeline) 1) Episode → Image Embeddings (drop pixels) convert_lerobot_to_embeddings_mono.py (GPU-accelerated preprocessing). Adds: - observation.images.image_dinov3 (float32[1024]) - observation.images.image_siglip2 (float32[768]) Removes: - observation.images.image 2) Task-Text Embeddings (one row per unique task) build_task_text_embeddings.py with SentenceTransformer("google/embeddinggemma-300m") → data/task_text_embeddings.parquet + meta/task_text_embeddings_info.json. 3) Data Consolidation (this release) All per-episode Parquets were consolidated into N large Parquet shards in one data/ folder. - The index meta/sharded_index.json records, for each episode, its normalized source identifier data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet, the destination shard path, and the (row_offset, num_rows) range inside that shard. - This preserves original addressing while making Hub sync/clone/stream far faster and more reliable. ---------------------------------------------------------------- Metadata (Excerpts) meta/task_text_embeddings_info.json ~~~json { "model": "google/embeddinggemma-300m", "dimension": 768, "normalized": true, "count": 599, "file": "task_text_embeddings.parquet" } ~~~ meta/info.json (embedding-only + shards) ~~~json { "codebase_version": "v2.0-embeddings-sharded", "robot_type": "google_robot", "total_episodes": 87212, "total_frames": 3786400, "total_tasks": 599, "total_videos": 87212, "total_chunks": 88, "chunks_size": 1000, "fps": 3, "splits": { "train": "0:87212" }, "data_path": "data/shard-{shard_id:05d}-of-{num_shards:05d}.parquet", "features": { "observation.state": { "dtype": "float32", "shape": [ 8 ], "names": { "motors": [ "x", "y", "z", "rx", "ry", "rz", "rw", "gripper" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "observation.images.image_dinov3": { "dtype": "float32", "shape": [ 1024 ], "names": null }, "observation.images.image_siglip2": { "dtype": "float32", "shape": [ 768 ], "names": null } }, "video_keys": [ "observation.images.image" ], "num_shards": 64, "index_path": "meta/sharded_index.json" } ~~~ ---------------------------------------------------------------- Environment & Dependencies Python ≥ 3.9 • PyTorch ≥ 2.1 • transformers • sentence-transformers • pyarrow • tqdm • decord (and optionally av) ---------------------------------------------------------------- Provenance, License, and Citation - Source dataset: [IPEC-COMMUNITY/fractal20220817_data_lerobot](https://huggingface.co/datasets/IPEC-COMMUNITY/fractal20220817_data_lerobot) - License: apache-2.0 (inherits from the source) - Encoders to cite: - facebook/dinov3-vitl16-pretrain-lvd1689m - google/siglip2-base-patch16-384 - google/embeddinggemma-300m ---------------------------------------------------------------- Changelog - v2.0-embeddings-sharded — Replaced video tensors with DINOv3 + SigLIP2 features; added EmbeddingGemma task-text embeddings; consolidated per-episode Parquets into N shards with a repo-local index; preserved original indexing/splits via normalized episode identifiers.