Datasets:
File size: 2,287 Bytes
75c73dc df7e00b 75c73dc df7e00b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: cc-by-4.0
task_categories:
- text-classification
- token-classification
- text-generation
language:
- en
tags:
- NLP
- Entailment
- NLI
- google-research-datasets
pretty_name: PropSegment
size_categories:
- 10K<n<100K
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:** https://github.com/google-research-datasets/PropSegmEnt
- **Repository:** https://github.com/google-research-datasets/PropSegmEnt
- **Paper:** https://arxiv.org/abs/2212.10750
- **Point of Contact:** [email protected]
### Dataset Summary
This is a reproduced (i.e. after web-crawling) and processed version of [the "PropSegment" dataset](https://github.com/google-research-datasets/PropSegmEnt) from Google Research.
PropSegment (Proposition-level Segmentation and Entailment) is a large-scale, human annotated dataset for segmenting English text into propositions, and recognizing proposition-level entailment relations --- whether a different, related document entails each proposition, contradicts it, or neither.
The dataset features >45k human annotated propositions, i.e. individual semantic units within sentences, as well as >35k entailment labels between propositions and documents.
Check out more details in the [dataset paper](https://arxiv.org/abs/2212.10750).
## Dataset Structure
### Data Instances
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |