File size: 2,287 Bytes
75c73dc
 
df7e00b
 
 
 
 
 
 
 
 
 
 
 
 
 
75c73dc
df7e00b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: cc-by-4.0
task_categories:
- text-classification
- token-classification
- text-generation
language:
- en
tags:
- NLP
- Entailment
- NLI
- google-research-datasets
pretty_name: PropSegment
size_categories:
- 10K<n<100K
---
# Dataset Card for Dataset Name

## Dataset Description

- **Homepage:** https://github.com/google-research-datasets/PropSegmEnt
- **Repository:** https://github.com/google-research-datasets/PropSegmEnt
- **Paper:** https://arxiv.org/abs/2212.10750
- **Point of Contact:** [email protected]

### Dataset Summary

This is a reproduced (i.e. after web-crawling) and processed version of [the "PropSegment" dataset](https://github.com/google-research-datasets/PropSegmEnt) from Google Research.   
PropSegment (Proposition-level Segmentation and Entailment) is a large-scale, human annotated dataset for segmenting English text into propositions, and recognizing proposition-level entailment relations --- whether a different, related document entails each proposition, contradicts it, or neither.

The dataset features >45k human annotated propositions, i.e. individual semantic units within sentences, as well as >35k entailment labels between propositions and documents. 

Check out more details in the [dataset paper](https://arxiv.org/abs/2212.10750).


## Dataset Structure

### Data Instances



### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

[More Information Needed]