--- dataset_info: features: - name: data_source dtype: string - name: prompt list: - name: role dtype: string - name: content dtype: string - name: ability dtype: string - name: reward_model struct: - name: style dtype: string - name: ground_truth dtype: string - name: extra_info struct: - name: index dtype: int64 splits: - name: train num_bytes: 10737418240 num_examples: 7861 download_size: 10737418240 dataset_size: 10737418240 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 task_categories: - reinforcement-learning - text-generation tags: - code - reasoning - rlhf - verl --- # Code Contests Plus (VERL Format) This dataset contains 8,432 competitive programming problems from the Code-Contests-Plus dataset, converted to VERL format for reinforcement learning applications. Each problem includes test cases validated through sandbox execution. **Source**: [ByteDance-Seed/Code-Contests-Plus](https://huggingface.co/datasets/ByteDance-Seed/Code-Contests-Plus) (1x config) **License**: MIT ## Dataset Structure The dataset follows the VERL format with the following fields: - `data_source` (string): Dataset source identifier ("code-contests-plus") - `prompt` (list): Chat template format with role/content structure containing the coding problem - `ability` (string): Task category ("code") - `reward_model` (dict): Evaluation information - `style`: Evaluation method ("rule") - `ground_truth`: JSON-encoded test cases with input/output pairs - `extra_info` (dict): Additional metadata - `index`: Example index from original dataset ## Test Case Format Each problem includes test cases in the `reward_model.ground_truth` field, stored as JSON with the following structure: ```json { "inputs": ["3\n1 2 3\n"], "outputs": ["6\n"] } ``` The format consists of two parallel arrays: - `inputs`: Array of input strings for each test case - `outputs`: Array of expected output strings corresponding to each input Each problem typically contains between 1 and 32 test cases, validated through sandbox execution during dataset creation. ## Data Processing The dataset was created through a multi-step processing pipeline: ### 1. Test Case Extraction - Extracted public test cases from the original dataset - Validated format and executability - Filtered problems without valid test cases ### 2. Sandbox Validation - Each problem's test cases were validated using a sandbox environment - Test input/output pairs verified for correctness - Only problems with passing validation were included ### 3. Size Filtering - Applied 10MB size limit to test case JSON (encoded) - Removed overly large problems to ensure efficient processing - Balanced dataset quality and usability ### Processing Statistics - **Total input examples**: 11,690 - **Successfully processed**: 8,432 (72.1% success rate) - **Total filtered**: 3,258 (27.9%) - No test cases: 54 (0.5%) - Size filtered (>10MB): 3,204 (27.4%) - **Processing time**: 69 minutes - **Configuration used**: 1x (standard difficulty) ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("sungyub/code-contests-plus-verl") # Access an example example = dataset['train'][0] # Get the problem description problem = example['prompt'][0]['content'] print("Problem:", problem) # Parse test cases ground_truth = json.loads(example['reward_model']['ground_truth']) inputs = ground_truth['inputs'] outputs = ground_truth['outputs'] print(f"\nNumber of test cases: {len(inputs)}") print(f"First input: {repr(inputs[0])}") print(f"Expected output: {repr(outputs[0])}") ``` ## Example Problem **Problem Description:** ``` Twins square1001 and E869120 are twins, but they are not identical twins... ``` **Test Case:** ```python Input: "" Output: "square1001" ``` ## Statistics - **Total examples**: 8,432 - **Average test cases per problem**: ~10-15 - **Test case range**: 1-32 per problem - **Dataset size**: ~10 GB uncompressed, ~10 GB compressed (includes test cases) - **Format**: Parquet (11 shards, ~1GB each) - **Schema**: VERL-compatible ## Data Quality All problems in this dataset have been validated to ensure: 1. **Valid test cases**: Each problem has at least one valid test case 2. **Correct input/output pairs**: Test cases verified through sandbox execution 3. **Size constraints**: Test cases are within reasonable size limits (≤10MB) 4. **Format consistency**: All examples follow the same schema structure ## Conversion Script The dataset was created using `preprocess_codecontests_verl.py`: ```bash # Standard conversion (used for this dataset) python preprocess_codecontests_verl.py \ --dataset-id ByteDance-Seed/Code-Contests-Plus \ --config 1x \ --output-dir ./codecontests_verl_full \ --sandbox-url http://localhost:8080/run_code \ --batch-size 100 # Process with different configuration python preprocess_codecontests_verl.py \ --dataset-id ByteDance-Seed/Code-Contests-Plus \ --config 2x \ --output-dir ./codecontests_verl_2x \ --sandbox-url http://localhost:8080/run_code \ --batch-size 100 # Process limited samples for testing python preprocess_codecontests_verl.py \ --dataset-id ByteDance-Seed/Code-Contests-Plus \ --config 1x \ --output-dir ./codecontests_test \ --sandbox-url http://localhost:8080/run_code \ --max-examples 100 ``` ## Related Datasets - [Code Contests Plus (Original)](https://huggingface.co/datasets/ByteDance-Seed/Code-Contests-Plus): Original dataset with competitive programming problems - [Skywork-OR1-Code-VERL](https://huggingface.co/datasets/sungyub/skywork-or1-code-verl): Similar VERL-format dataset with 14,057 coding problems ## Additional Information For more information about VERL format and usage in reinforcement learning, see: - [VERL Documentation](https://verl.readthedocs.io/en/latest/preparation/prepare_data.html) - [VERL GitHub Repository](https://github.com/volcengine/verl) ## Citation If you use this dataset, please cite the original Code-Contests-Plus dataset: ```bibtex @misc{code-contests-plus, title={Code-Contests-Plus}, author={ByteDance-Seed}, year={2024}, publisher={HuggingFace}, url={https://huggingface.co/datasets/ByteDance-Seed/Code-Contests-Plus} } ``` ## License This dataset is released under the MIT License, following the license of the original Code-Contests-Plus dataset.