Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
natural-language-inference
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """bAbI_nli datasets""" | |
| from __future__ import absolute_import, division, print_function | |
| import csv | |
| import os | |
| import textwrap | |
| import six | |
| import datasets | |
| bAbI_nli_CITATION = r"""@article{weston2015towards, | |
| title={Towards ai-complete question answering: A set of prerequisite toy tasks}, | |
| author={Weston, Jason and Bordes, Antoine and Chopra, Sumit and Rush, Alexander M and Van Merri{\"e}nboer, Bart and Joulin, Armand and Mikolov, Tomas}, | |
| journal={arXiv preprint arXiv:1502.05698}, | |
| year={2015} | |
| } | |
| """ | |
| _babi_nli_DESCRIPTION = """\ | |
| bAbi tasks recasted as natural language inference. | |
| """ | |
| DATA_URL = "https://www.dropbox.com/s/0b98tbrv2mej3cu/babi_nli.zip?dl=1" | |
| LABELS=["not-entailed", "entailed"] | |
| CONFIGS=['single-supporting-fact', | |
| 'two-supporting-facts', | |
| 'three-supporting-facts', | |
| 'two-arg-relations', | |
| 'three-arg-relations', | |
| 'yes-no-questions', | |
| 'counting', | |
| 'lists-sets', | |
| 'simple-negation', | |
| 'indefinite-knowledge', | |
| 'basic-coreference', | |
| 'conjunction', | |
| 'compound-coreference', | |
| 'time-reasoning', | |
| 'basic-deduction', | |
| 'basic-induction', | |
| 'positional-reasoning', | |
| 'size-reasoning', | |
| 'path-finding', | |
| 'agents-motivations'] | |
| class bAbI_nli_Config(datasets.BuilderConfig): | |
| """BuilderConfig for bAbI_nli.""" | |
| def __init__( | |
| self, | |
| text_features, | |
| label_classes=None, | |
| process_label=lambda x: x, | |
| **kwargs, | |
| ): | |
| """BuilderConfig for bAbI_nli. | |
| Args: | |
| text_features: `dict[string, string]`, map from the name of the feature | |
| dict for each text field to the name of the column in the tsv file | |
| label_column: `string`, name of the column in the tsv file corresponding | |
| to the label | |
| data_url: `string`, url to download the zip file from | |
| data_dir: `string`, the path to the folder containing the tsv files in the | |
| downloaded zip | |
| citation: `string`, citation for the data set | |
| url: `string`, url for information about the data set | |
| label_classes: `list[string]`, the list of classes if the label is | |
| categorical. If not provided, then the label will be of type | |
| `datasets.Value('float32')`. | |
| process_label: `Function[string, any]`, function taking in the raw value | |
| of the label and processing it to the form required by the label feature | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(bAbI_nli_Config, self).__init__( | |
| version=datasets.Version("1.0.0", ""), **kwargs | |
| ) | |
| self.text_features = text_features | |
| self.label_column = "label" | |
| self.label_classes = LABELS | |
| self.data_url = DATA_URL | |
| self.data_dir = self.name #os.path.join("babi_nli", self.name) | |
| self.citation = textwrap.dedent(bAbI_nli_CITATION) | |
| self.process_label = lambda x: str(x) | |
| self.description = "" | |
| self.url = "https://github.com/facebookarchive/bAbI-tasks/blob/master/LICENSE.md" | |
| class bAbI_nli(datasets.GeneratorBasedBuilder): | |
| """The General Language Understanding Evaluation (bAbI_nli) benchmark.""" | |
| BUILDER_CONFIG_CLASS = bAbI_nli_Config | |
| BUILDER_CONFIGS = [ | |
| bAbI_nli_Config( | |
| name=name, | |
| text_features={"premise": "premise", "hypothesis": "hypothesis"}, | |
| ) for name in CONFIGS | |
| ] | |
| def _info(self): | |
| features = { | |
| text_feature: datasets.Value("string") | |
| for text_feature in six.iterkeys(self.config.text_features) | |
| } | |
| if self.config.label_classes: | |
| features["label"] = datasets.features.ClassLabel( | |
| names=self.config.label_classes | |
| ) | |
| else: | |
| features["label"] = datasets.Value("float32") | |
| features["idx"] = datasets.Value("int32") | |
| return datasets.DatasetInfo( | |
| description=_babi_nli_DESCRIPTION, | |
| features=datasets.Features(features), | |
| homepage=self.config.url, | |
| citation=self.config.citation + "\n" + bAbI_nli_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| dl_dir = dl_manager.download_and_extract(self.config.data_url) | |
| data_dir = os.path.join(dl_dir, self.config.data_dir) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "data_file": os.path.join(data_dir or "", "train.tsv"), | |
| "split": "train", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "data_file": os.path.join(data_dir or "", "validation.tsv"), | |
| "split": "validation", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "data_file": os.path.join(data_dir or "", "test.tsv"), | |
| "split": "test", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, data_file, split): | |
| process_label = self.config.process_label | |
| label_classes = self.config.label_classes | |
| with open(data_file, encoding="utf8") as f: | |
| reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
| for n, row in enumerate(reader): | |
| example = { | |
| feat: row[col] | |
| for feat, col in six.iteritems(self.config.text_features) | |
| } | |
| example["idx"] = n | |
| if self.config.label_column in row: | |
| label = row[self.config.label_column] | |
| if label_classes and label not in label_classes: | |
| label = int(label) if label else None | |
| example["label"] = process_label(label) | |
| else: | |
| example["label"] = process_label(-1) | |
| yield example["idx"], example | |