Describe where the data comes from
Browse files
README.md
CHANGED
@@ -17,3 +17,52 @@ configs:
|
|
17 |
- split: train
|
18 |
path: data/train-*
|
19 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
- split: train
|
18 |
path: data/train-*
|
19 |
---
|
20 |
+
|
21 |
+
This is a simple recipes dataset, obtained by formatting/cleaning [this one](formido/recipes-20k), that I think it was just made by scrapping the food.com website.
|
22 |
+
Here's the cleanup script I used to obtain it.
|
23 |
+
|
24 |
+
```python
|
25 |
+
from datasets import load_dataset
|
26 |
+
|
27 |
+
def clean_recipe(recipe):
|
28 |
+
recipe = recipe.replace(" , ", ", ")
|
29 |
+
recipe = recipe.replace('"', "'")
|
30 |
+
recipe = recipe.replace("\\'", "'")
|
31 |
+
recipe = recipe.strip("\\']")
|
32 |
+
recipe = recipe.strip("['")
|
33 |
+
splitted = recipe.split("\', \'")
|
34 |
+
recipe = "\n".join(map(lambda x: "- " + (x.capitalize()), splitted))
|
35 |
+
return recipe
|
36 |
+
|
37 |
+
def clean_name(name):
|
38 |
+
name = name.capitalize()
|
39 |
+
name = name.replace(" ", " ")
|
40 |
+
return name
|
41 |
+
|
42 |
+
def preprocess_function(examples):
|
43 |
+
recipes = examples["output"]
|
44 |
+
names = examples["input"]
|
45 |
+
|
46 |
+
clean_recipes = []
|
47 |
+
clean_names = []
|
48 |
+
for recipe, name in zip(recipes, names):
|
49 |
+
# Sanitize the name and recipe string
|
50 |
+
clean_recipes.append(clean_recipe(recipe))
|
51 |
+
clean_names.append(clean_name(name))
|
52 |
+
|
53 |
+
return {"recipes": clean_recipes, "names": clean_names}
|
54 |
+
|
55 |
+
def split_dataset():
|
56 |
+
from transformers import set_seed
|
57 |
+
set_seed(42)
|
58 |
+
dataset_id = "formido/recipes-20k"
|
59 |
+
dataset = load_dataset(dataset_id)
|
60 |
+
dataset = dataset.map(preprocess_function, batched=True, remove_columns=dataset["train"].column_names)
|
61 |
+
dataset.push_to_hub("simple_recipes")
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
split_dataset()
|
66 |
+
|
67 |
+
```
|
68 |
+
|