{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_16297/2698126198.py:9: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", " from tqdm.autonotebook import tqdm\n" ] } ], "source": [ "%matplotlib widget\n", "import ipywidgets as widgets\n", "from IPython.display import clear_output\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import pandas as pd\n", "import numpy as np\n", "from tqdm.autonotebook import tqdm\n", "from scipy.ndimage import gaussian_filter1d\n", "import h5py\n", "import copy\n", "import os\n", "import shlex\n", "import torch\n", "\n", "from torch.utils.data import DataLoader\n", "from BasisConvolution.util.hyperparameters import defaultHyperParameters, parseHyperParameters, finalizeHyperParameters\n", "from BasisConvolution.util.dataPlotting import getFileCount, getPreparePlotFunction, getUpdatePlotFunction\n", "from BasisConvolution.util.arguments import parser\n", "from BasisConvolution.sph.sphOps import sphOperationStates\n", "from BasisConvolution.util.dataloader import datasetLoader, processFolder#, DataLoader\n", "from BasisConvolution.util.augment import loadAugmentedFrame\n", "from BasisConvolution.util.hyperparameters import make_hash, toPandaDict\n", "from BasisConvolution.util.network import buildModel, runInference\n", "from BasisConvolution.util.augment import augmentState, loadAugmentedBatch\n", "from BasisConvolution.util.plotting import prepVisualizationState, visualizeParticleQuantity\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "hyperParameterDict = defaultHyperParameters()\n", "\n", "hyperParameterDict['batch_size'] = 1\n", "hyperParameterDict['maxRollOut'] = 0\n", "\n", "hyperParameterDict['device'] = 'cuda'\n", "\n", "hyperParameterDict['augmentAngle'] = False\n", "hyperParameterDict['augmentJitter'] = False" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a423b419ae4546b994b879c4cb5c7699", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Dropdown(description='File:', layout=Layout(width='initial'), options=('dataset/train/collision - 2023-07-31_1…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7b526c796d694e76ac6142a328133145", "version_major": 2, "version_minor": 0 }, "text/plain": [ "IntSlider(value=0, description='Slider:', max=126)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "509a1d2707204dfb88f5944e63f33e4e", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABUYAAAH0CAYAAADxDPcMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMwklEQVR4nOzdeWAU5f0/8PczM3vk2gABQoAccipeiEUFq0iL4tGiLaVaKxD7FdDWtkq/rdpvK2JbqL9ara1a8ChUUYuK+qXqt95nSxVU1IIHyJFwhJvce8zM8/tjdmevSbJJNtfu+9WOSeaZ49nV7CfPZ55DSCkliIiIiIiIiIiIiLKI0tMVICIiIiIiIiIiIupuTIwSERERERERERFR1mFilIiIiIiIiIiIiLIOE6NERERERERERESUdZgYJSIiIiIiIiIioqzDxCgRERERERERERFlHSZGiYiIiIiIiIiIKOswMUpERERERERERERZh4lRIiIiIiIiIiIiyjpMjBIREREREREREVHWYWKUiIiIiIiIiIiIsg4To0RERERERERERJR1mBglIiIiIiIiIiKirMPEKBEREREREREREWUdJkaJiIiIiIiIiIgo6zAxSkRERERERERERFmHiVEiIiIiIiIiIiLKOkyMEhERERERERERUdZhYpSIiIiIiIiIiIiyDhOjRERERERERERElHWYGCUiIiIiIiIiIqKsw8QoERERERERERERZR0mRomIiIiIiIiIiCjrMDFKREREREREREREWYeJUSIiIiIiIiIiIso6TIwSERERERERERFR1mFilIiIiIiIiIiIiLIOE6NERERERERERESUdZgYJSIiIiIiIiIioqzDxCgRERERERERERFlHSZGiYiIiIiIiIiIKOswMUpERERERERERERZh4lRIiIiIiIiIiIiyjpMjBIREREREREREVHWYWKUiIiIiIiIiIiIsg4To0RERERERERERJR1mBglIiIiIiIiIiKirMPEKBEREREREREREWUdJkaJiIiIiIiIiIgo6zAxSkRERERERERERFmHiVEiIiIiIiIiIiLKOkyMEhERERERERERUdZhYpSIiIiIiIiIiIiyDhOjRERERERERERElHWYGCUiIiIiIiIiIqKsw8QoERERERERERERZR0mRomIiIiIiIiIiCjrMDFKREREREREREREWYeJUSIiIiIiIiIiIso6TIwSERERERERERFR1mFilIiIiIiIiIiIiLIOE6NERERERERERESUdZgYJSIiIiIiIiIioqzDxCgRERERERERERFlHSZGiYiIiIiIiIiIKOswMUpERERERERERERZh4lRIiIiIiIiIiIiyjpMjBIREREREREREVHWYWKUiIiIiIiIiIiIsg4To0RERERERERERJR1mBglIiIiIiIiIiKirMPEKBEREREREREREWUdJkaJiIiIiIiIiIgo6zAxSkRERERERERERFmHiVEiIiIiIiIiIiLKOkyMEhERERERERERUdZhYpSIiIiIiIiIiIiyDhOjRERERERERERElHWYGCUiIiIiIiIiIqKsw8QoERERERERERERZR0mRomIiIiIiIiIiCjrMDFKlCa33HILhBDtPu+cc87BOeeck/4KpdHKlSshhMCOHTt6uipERNRBmRynOqqj70ln7dixA0IIrFy5stvvTUSUyRjrknX1a6uoqEBlZWWXXZ+oqzExShkhkriLbF6vF2PGjMG1116Lffv2pe0+TU1NuOWWW/D666+n7ZrpVllZifz8/J6uBhERxWCc6pz3338fQgj84he/aPGYLVu2QAiBhQsXdmPNWvfoo4/iD3/4Q09Xg4ioWzDWdc4dd9wBIQRefvnlFo+5//77IYTA2rVru7Fm7bN582bccsst7FRDfQYTo5RRbr31Vjz88MO4++67MXnyZPz5z3/GpEmT0NTUlJbrNzU1YfHixY5B+Be/+AWam5vTch8iIspMjFMdM2HCBBx77LF47LHHWjzm0UcfBQBcccUV3VWtNrWUGC0vL0dzczNmz57d/ZUiIupijHUdc9lll0FRFDueOXn00UdRVFSECy64oBtr1rrPPvsM999/v/3z5s2bsXjxYiZGqc9gYpQyygUXXIArrrgCV111FVauXInrrrsO27dvx//+7/926rqmacLv97d6jKZp8Hq9nboPERFlNsapjvvud7+Lbdu24d///rdj+WOPPYZjjz0WEyZM6OaatV+kJ5Wqqj1dFSKitGOs65ihQ4di6tSpeOqppxAIBJLKd+/ejTfffBOzZs2Cy+XqgRo683g8vao+RO3FxChltK985SsAgO3btwMAbr/9dkyePBlFRUXIycnBqaeeiieffDLpPCEErr32WjzyyCM4/vjj4fF4sGzZMgwaNAgAsHjxYnuIyC233AKg5flsVq1ahdNOOw25ubno378/zj77bLz44out1jsQCGDRokUYNWoUPB4PSktL8bOf/cwxQKaioqICX/va1/D222/jtNNOg9frxYgRI/DQQw8lHbtp0yZ85StfQU5ODoYPH45f//rXME3T8br/93//h7POOgt5eXkoKCjARRddhE2bNtnlr776KhRFwc033xx33qOPPgohBP785z936PUQEWWKbItTn3zyCXJycjBnzpy4/W+//TZUVcUNN9zQ4rnf/e53AcCxJ817772Hzz77zD4GaDtGtSaV9+Tee++13/uhQ4fiBz/4AY4ePWqXn3POOXjuueewc+dO+99FRUUFgOQ5RlesWAEhBD744IOkuixZsgSqqmL37t0p1Z2IqLfJtli3aNEiuFwuHDhwIKls/vz56NevX4sJ3iuuuAK1tbV47rnnksr+9re/wTRNO9aZpok//OEPOP744+H1elFcXIwFCxbgyJEjrdYPAPbv34//+q//QnFxMbxeL04++WT89a9/TTrONE3cddddOPHEE+H1ejFo0CCcf/752LBhg31M7ByjK1euxKxZswAAU6dOtf/9vP7665g7dy4GDhyIUCiUdJ/zzjsPY8eObbPeRF2BiVHKaF988QUAoKioCABw11134ZRTTsGtt96KJUuWQNM0zJo1yzHwvPrqq7j++utx6aWX4q677sLEiRPtRN43vvENPPzww3j44YfxzW9+s8X7L168GLNnz4bL5cKtt96KxYsXo7S0FK+++mqL55imiRkzZuD222/H17/+dfzpT3/CJZdcgjvvvBOXXnpph9+LrVu34lvf+hbOPfdc/P73v0f//v1RWVkZ10isqanB1KlTsXHjRtx444247rrr8NBDD+Guu+5Kut7DDz+Miy66CPn5+bjtttvwy1/+Eps3b8aXv/xle9jEV77yFXz/+9/H0qVL8f777wMA9u7dix/+8IeYNm0arr766g6/HiKiTJBtceq4447Dr371Kzz88MP2/GiNjY2orKzEsccei1tvvbXFc4855hhMnjwZjz/+OAzDiCuLJEsvv/xyAKnFqM68J7fccgt+8IMfYOjQofj973+PmTNnYvny5TjvvPPsBt///M//YPz48Rg4cKD976Kl+Ua/9a1vIScnB4888khS2SOPPIJzzjkHw4YNa7XeRES9VbbFutmzZ0PXdaxevTpufzAYxJNPPomZM2e22Kv1m9/8Jrxer+NDwEcffRTl5eU488wzAQALFizAT3/6U5x55pm46667cOWVV+KRRx7B9OnTHZOPEc3NzTjnnHPw8MMP47vf/S5+97vfobCwEJWVlUntvv/6r//Cddddh9LSUtx222248cYb4fV6Wxy9cfbZZ+NHP/oRAODnP/+5/e/nuOOOw+zZs3Ho0CG88MILcefU1NTg1Vdf7VVT4VCWkUQZYMWKFRKAfPnll+WBAwdkdXW1/Nvf/iaLiopkTk6O3LVrl5RSyqamprjzgsGgPOGEE+RXvvKVuP0ApKIoctOmTXH7Dxw4IAHIRYsWJdVh0aJFMvZXasuWLVJRFPmNb3xDGoYRd6xpmvb3U6ZMkVOmTLF/fvjhh6WiKPKtt96KO2fZsmUSgPznP//Z6nsxd+5cmZeXF7evvLxcApBvvvmmvW///v3S4/HIn/zkJ/a+6667TgKQ77zzTtxxhYWFEoDcvn27lFLK+vp62a9fPzlv3ry4+9TU1MjCwsK4/Y2NjXLUqFHy+OOPl36/X1500UXS5/PJnTt3tvo6iIgyCeNUlGEY8stf/rIsLi6WBw8elD/4wQ+kpmly/fr1rZ4npZT33HOPBCBfeOGFuOsNGzZMTpo0SUrZvhjVkfdk//790u12y/POOy/umLvvvlsCkH/5y1/sfRdddJEsLy9Peh3bt2+XAOSKFSvsfd/5znfk0KFD4675/vvvJx1HRNRbMdZFTZo0SZ5++ulx+5566ikJQL722mutnjtr1izp9XplbW2tve/TTz+VAORNN90kpZTyrbfekgDkI488EnfuP/7xj6T9ia/tD3/4gwQgV61aZe8LBoNy0qRJMj8/X9bV1UkppXz11VclAPmjH/0oqY6x7115ebmcO3eu/fMTTzzh+DoNw5DDhw+Xl156adz+O+64Qwoh5LZt21p9X4i6CnuMUkaZNm0aBg0ahNLSUlx22WXIz8/H008/bfeyyMnJsY89cuQIamtrcdZZZ9m9GWNNmTIF48aN63BdnnnmGZimiZtvvhmKEv+r5jS8I+KJJ57Acccdh2OPPRYHDx60t8gQlNdee61D9Rk3bhzOOuss++dBgwZh7Nix2LZtm73v+eefxxlnnIHTTjst7rjYoYkA8NJLL+Ho0aP4zne+E1dHVVVx+umnx9UxNzcXK1euxCeffIKzzz4bzz33HO68806UlZV16HUQEfVljFOAoihYuXIlGhoacMEFF+Dee+/FTTfdhC996Utt1vnSSy+Fy+WK60nzxhtvYPfu3Xasak+M6sh78vLLLyMYDOK6666LO2bevHnw+XyOPZ5SMWfOHOzZsyeufo888ghycnIwc+bMDl2TiKgnMNZZn+nvvPOO3VsWsD7TS0tLMWXKlFbPveKKK+D3+/HUU0/Z+yJxLxLrnnjiCRQWFuLcc8+Nq9+pp56K/Pz8Vuv3/PPPY8iQIfjOd75j73O5XPjRj36EhoYGvPHGGwCANWvWQAiBRYsWJV2jtfeuJYqi4Lvf/S7Wrl2L+vp6e/8jjzyCyZMn45hjjmn3NYnSQevpChCl0z333IMxY8ZA0zQUFxdj7NixcQHw2Wefxa9//Wts3Lgxbm4Ypw/2zn4wf/HFF1AUpd2BfMuWLfjkk0/suXMS7d+/v0P1cUpE9u/fP24Omp07d+L0009POi5xvpctW7YAiM4XlMjn88X9fOaZZ+Kaa67BPffcg+nTp+N73/teu+tPRJQJGKcsI0eOxC233IKf/vSnOOGEE/DLX/4yrry2tjZuVWG3240BAwagqKgI06dPx9NPP41ly5bZww01TcO3v/1tu35A6jEqVirvyc6dOwEkx0a3240RI0bY5e117rnnoqSkBI888gi++tWvwjRNPPbYY7j44otRUFDQoWsSEfUExjrrQd51112HRx55BDfffDNqa2vx7LPP4vrrr7df54EDB+KmhsnPz0d+fj4uuOACDBgwAI8++qg9d+djjz2Gk08+Gccff7xdv9raWgwePLjd9du5cydGjx6dlCg+7rjj7HLAeu+GDh2KAQMGtPpa22POnDm47bbb8PTTT2POnDn47LPP8N5772HZsmVpuwdRezExShnltNNOa7HHyVtvvYUZM2bg7LPPxr333ouSkhK4XC6sWLHCcQ6X2CeZ3ck0TZx44om44447HMtLS0s7dN2WVr6VUrb7WpHFmB5++GEMGTIkqVzT4j9aAoEAXn/9dQBWgG1qakJubm6770tE1NcxTkVFFr3Ys2cPDh06FBdPfvzjH8ctAjFlyhQ7jlxxxRV49tln8eyzz2LGjBlYs2YNzjvvPLvx2t4Y1VuoqorLL78c999/P+69917885//xJ49ezjnGhH1OYx1VgeUr33ta3Zi9Mknn0QgEIj7TJ84cWLcw7RFixbhlltugcvlwre//W3cf//92LdvH6qqqrBlyxb8v//3/+LqN3jwYMe5qQG0mNDtaePGjcOpp56KVatWYc6cOVi1ahXcbrf9cJOoJ/TOvwyJusCaNWvg9XrxwgsvwOPx2PtXrFiR8jXaM2Rg5MiRME0Tmzdvxvjx49t13ocffoivfvWrHRqi0Bnl5eV2T5tYn332WdzPI0eOBAAMHjwY06ZNa/O6ixYtwieffILbb78dN9xwA2688Ub88Y9/TE+liYgyRDbFqWXLluGll17Cb37zGyxduhQLFizA//7v/9rlP/vZz+Iaj/3797e/nzFjBgoKCvDoo4/C5XLhyJEjcVO+tDdGJb62tt6T8vJyAFZsHDFihL0/GAxi+/btcfds7/szZ84c/P73v8ff//53/N///R8GDRqE6dOnt+saRES9WTbFujlz5uDiiy/G+vXr8cgjj+CUU06xe3wC1hDy2NERsTHlu9/9LpYtW4bVq1dj+/btEELEDX0fOXIkXn75ZZx55pntTh6Xl5fjo48+gmmacb1GP/30U7s8co8XXngBhw8fblev0bberzlz5mDhwoXYu3cvHn30UVx00UVxcZ6ou3GOUcoaqqpCCBE3XGHHjh145plnUr5GpJfj0aNH2zz2kksugaIouPXWW+3eKxGt9dL89re/jd27d+P+++9PKmtubkZjY2PK9W2vCy+8EP/+97/x7rvv2vsOHDiQ9CRy+vTp8Pl8WLJkieOKhwcOHLC/f+edd3D77bfjuuuuw09+8hP89Kc/xd13323PXUNERJZsiVPbt2/HT3/6U8ycORM///nPcfvtt2Pt2rV46KGH7GPGjRuHadOm2dupp55ql+Xk5OAb3/gGnn/+efz5z39GXl4eLr74Yru8PTEqUSrvybRp0+B2u/HHP/4x7n168MEHUVtbi4suusjel5eXh9ra2lbfj1gnnXQSTjrpJDzwwANYs2YNLrvssl7bw5WIqCOyJdYBwAUXXICBAwfitttuwxtvvJE0AuDMM8+Mi3WxidEzzzwTFRUVWLVqFVavXo0pU6Zg+PDhcfUzDAO/+tWvku6r63qr782FF16ImpoarF69Ou6cP/3pT8jPz7fnQJ05cyaklFi8eHHSNVp77/Ly8gC0/O/nO9/5DoQQ+PGPf4xt27ZxZAT1OP6lRVnjoosuwh133IHzzz8fl19+Ofbv34977rkHo0aNwkcffZTSNXJycjBu3DisXr0aY8aMwYABA3DCCSfghBNOSDp21KhR+J//+R/86le/wllnnYVvfvOb8Hg8WL9+PYYOHYqlS5c63mP27Nl4/PHHcfXVV+O1117DmWeeCcMw8Omnn+Lxxx/HCy+8kNICFR3xs5/9DA8//DDOP/98/PjHP0ZeXh7uu+8++6lihM/nw5///GfMnj0bEyZMwGWXXYZBgwahqqoKzz33HM4880zcfffd8Pv9mDt3LkaPHo3f/OY3AIDFixfj73//O6688kp8/PHHduAkIsp22RCnpJT43ve+h5ycHPz5z38GACxYsABr1qzBj3/8Y0ybNg1Dhw5t83VeccUVeOihh/DCCy/gu9/9blwsSTVGOUnlPRk0aBBuuukmLF68GOeffz5mzJiBzz77DPfeey8mTpwY18A79dRTsXr1aixcuBATJ05Efn4+vv71r7f62ubMmYP//u//tl8nEVEmyYZYF+FyuXDZZZfh7rvvhqqqcT0+2yKEwOWXX44lS5YAAG699da48ilTpmDBggVYunQpNm7ciPPOOw8ulwtbtmzBE088gbvuugvf+ta3HK89f/58LF++HJWVlXjvvfdQUVGBJ598Ev/85z/xhz/8wZ7XeurUqZg9ezb++Mc/YsuWLTj//PNhmibeeustTJ06Fddee63j9cePHw9VVXHbbbehtrYWHo8HX/nKV+z5UAcNGoTzzz8fTzzxBPr16xf3QJGoR3T9wvdEXW/FihUSgFy/fn2rxz344INy9OjR0uPxyGOPPVauWLFCLlq0SCb+KgCQP/jBDxyv8a9//Uueeuqp0u12SwBy0aJFUkrpeB0ppfzLX/4iTznlFOnxeGT//v3llClT5EsvvWSXT5kyRU6ZMiXunGAwKG+77TZ5/PHH2+edeuqpcvHixbK2trbV1zh37lyZl5cXt6+8vFxedNFFScc63fujjz6SU6ZMkV6vVw4bNkz+6le/kg8++KAEILdv3x537GuvvSanT58uCwsLpdfrlSNHjpSVlZVyw4YNUkopr7/+eqmqqnznnXfiztuwYYPUNE1ec801rb4WIqJMwThlueuuuyQAuWbNmrj9VVVV0ufzyQsvvLC1t8em67osKSmRAOTzzz/veExbMUrKjr8nUkp59913y2OPPVa6XC5ZXFwsr7nmGnnkyJG4YxoaGuTll18u+/XrJwHI8vJyKaWU27dvlwDkihUrku69d+9eqaqqHDNmTErvBRFRb8FYl+zdd9+VAOR5552X0vGxNm3aJAFIj8eTFF8i7rvvPnnqqafKnJwcWVBQIE888UT5s5/9TO7Zs6fV17Zv3z555ZVXyoEDB0q32y1PPPFEx5ik67r83e9+J4899ljpdrvloEGD5AUXXCDfe+89+5jy8nI5d+7cuPPuv/9+OWLECKmqqgQgX3vttbjyxx9/XAKQ8+fPb89bQtQlhJQdWHmFiIiIiIjS7uDBgygpKcHNN9+MX/7ylz1dHSIi6oQPP/wQ48ePx0MPPYTZs2f3dHV6jf/93//FJZdcgjfffBNnnXVWT1eHshznGCUiIiIi6iVWrlwJwzDYgCYiygD3338/8vPz8c1vfrOnq9Kr3H///RgxYgS+/OUv93RViDjHKBERERFRT3v11VexefNm/OY3v8Ell1yCioqKnq4SERF10N///nds3rwZ9913H6699lquqxD2t7/9DR999BGee+453HXXXW2uYE/UHTiUnoiIiIioh51zzjn417/+hTPPPBOrVq3CsGHDerpKRETUQRUVFdi3bx+mT5+Ohx9+2F7QKNsJIZCfn49LL70Uy5Ytg6axrx71PCZGiYiIiIiIiIiIKOtwjlEiIiIiIiIiIiLqkC1btmDy5MkYM2YMJk6ciE2bNjke9+CDD2L06NEYOXIk5s2bh1AoBADYsWMHzjnnHBQWFmL8+PHdWHMmRomIiIiIiIiIiKiDFixYgPnz5+Pzzz/HDTfcgMrKyqRjtm/fjl/+8pd46623sHXrVuzbtw/33XcfAMDn8+HXv/41Hn300W6uOYfSd4hpmtizZw8KCgo4WTARZRQpJerr6zF06FAoigK/349gMJjy+W63G16vtwtrSN2FsY6IMhVjHUUw1hFRpurOWLd//36MGjUKhw8fhqZpkFKipKQEb7/9NkaNGmUf97vf/Q5ffPEFli1bBgB4/vnnsWTJErz99tv2Ma+//jquu+46bNy4MeW6dhZnuu2APXv2oLS0tKerQUTUZaqrqzFw4ECUlZXhwIEDKZ83ZMgQbN++nQ3GDMBYR0SZjrGOGOuIKNN1JtZ9+OGHcbHO4/HA4/E43qOkpMReTEsIgbKyMlRVVcUlRquqqlBeXm7/XFFRgaqqqo68rLRiYrQDIivKPfRQNS6+2Ae/H/j00+TjItMibNkCNDbGl5WVAQMGAAcPArt2JV4fGDkSMAzg44+Tr3v88YDLBWzbBtTVxZcNHQoMHgwcOQLs3BlflpMDjB1rff/hh0BiX+GxY61jqqqAw4fjywYPtq5dXw988UV8mctl1QkANm0CwlNE2EaOtF7Tnj3A/v3xZQMGWO9FczPw2WfxZUIAJ59sff/ZZ9YxscrLgf79rWvu2RNf5vMBI0ZYdXGa2uLEEwFVtV5LfX182fDhwMCB1nuQ+DualweMHm197/QA49hjAa8X2LEDOHo0vmzIEGurq7P+3cXyeIDjjrO+/89/AF2PLx81CsjPB3bvBhI/y4qKgNJSoKkJ+Pzz+DJFAU46yfr+008Bvz++vKIC6NcP2LcP2Ls3vqywEDjmGCAYBDZvTn6tJ51kXX/rVqChIb6stNSq16FDQHV1fFl+vvV6TBP46KPk644bB7jdwPbtQG1tfFlJCVBcbL23O3bEl3m91vsPWNc1zfjyMWOA3FyrPocOxZcNGgQMG2a9jq1b48s0DTjhBOv7Tz4BAoH48hEjrP/eamqsLVa/ftZ73Jc+Iw4dqsMFF5SioKAAwWAQBw4cwDtv/Bv5+fnJN0rQ0NCA06ecgWAwyMZiBmCsiy9jrItirLMw1lkY66gvY6yLL2Osi2KsszDWWbI11hUXF8ftX7RoEW655ZY2z+9rOJS+A+rq6lBYWIg33qjF2Wf7ero6RERp8+abdZgypRC14b9eCgsLsem9j1GQX9DmufUN9Tj+1BNRW1sLn4+fjX0dYx0RZSrGOopgrCOiTJWOWFddXR0X61rqMdrXh9Jz8SUiImqVlDLljYiIqC9irCMiokzX3ljn8/niNqekKAAMHjwYEyZMwKpVqwAAa9aswfDhw+OSogAwc+ZMrF27FjU1NZBSYtmyZbjsssu69kWngInRThgypKdrQETUHcx2bJRpGOuIKDsw1mUzxjoiyg5dF+uWL1+O5cuXY8yYMfjtb3+LFStWAACuuuoqrF27FgAwYsQILF68GGeeeSZGjRqFQYMGYcGCBQCApqYmDB8+HLNmzcLmzZsxfPhw3HTTTZ19wSnhHKOdwABKRFlByuTJq1o6jjIOYx0RZQXGuqzGWEdEWaELY93YsWOxbt26pP0PPPBA3M/z5s3DvHnzko7Lzc3FrsRJWLsJe4x2QuLkt0REfV1kIv9YEhISZgobG4uZiLGOiDINYx0lYqwjokzDWJc6JkY7IXEFOiKivi4nx2Fn5MliKhtlHMY6Iso0zrGuHRtlHMY6Iso0bNeljkPpiYjIVlWVvC/VxSa4IAUREfUFzrHOhJRtz6mWyjFEREQ9je261LHHKBER2Q4fdtgpzdS3djrvvPNw0kknYfz48TjrrLPwwQcfAAC2bNmCyZMnY8yYMZg4cSI2bdpkn9PRMiIiIqD7Yx0REVF3Y6xLHROjRETUqkgvmlS29nr88cfx0UcfYePGjVi4cCEqKysBAAsWLMD8+fPx+eef44YbbrD3d6aMiIioJV0Z64iIiHoDxjpnTIx2gsfT0zUgIuoGXfhksV+/fvb3tbW1EEJg//792LBhA6644goAwMyZM1FdXY2tW7d2uIw6jrGOiLICe9FkNcY6IsoKjHWOOMdoJxx3XE/XgIio60nTgDSNlI4DgLqEpV09Hg88rbQ45syZg9deew0A8Pzzz6O6uholJSXQNCtECSFQVlaGqqoqFBYWdqhs1KhR7X/hBICxjoiyQ3tjHWUWxjoiygaMdc7YY5SIiGyDBzvtbd9SvaWlpSgsLLS3pUuXtnrPhx56CNXV1fj1r3+NG264IV0vhYiIyFE6Yh0REVFvxliXOvYY7YT//AeYPLmna0FElD5Dhybva++Txerqavh8Pnt/a71FY82dOxdXX301hg8fjr1790LXdWiaBiklqqqqUFZWBp/P16Ey6jjGOiLKNOmIdZRZGOuIKNMw1qWOPUY7Qdd7ugZEROlVX5+8T5qmHURb36y5aHw+X9zWUmL06NGj2LNnj/3zM888g6KiIgwePBgTJkzAqlWrAABr1qzB8OHDMWrUqA6XUccx1hFRpklHrKPMwlhHRJmGsS517DFKRES2L75w2JnqBNztnKS7trYWs2bNQnNzMxRFwaBBg/Dss89CCIHly5ejsrISS5Ysgc/nw4oVK+zzOlpGREQEdG+sIyIi6gmMdaljYpSIiFonDUiZwnCKVI6JUV5ejnfffdexbOzYsVi3bl1ay4iIiFrURbGOiIio12Csc8TEKBERtUrKFOeiybIASkREmUNKCSnbXmwilWOIiIh6I7brnDEx2gmcto6IsoGUJmQKwylSOYb6HsY6IsoGUuqQZtsTTUrJySgzEWMdEWUDtuucMTHaCfn5PV0DIqL0crkcdpqGtbUly1YvzBaMdUSUaRjrKBFjHRFlGsa61DEx2gm7dwM+X0/XgogofY4/PnkfnyxmN8Y6Iso0jHWUiLGOiDINY13qlJ6uQGe9+eab+PrXv46hQ4dCCIFnnnmmzXNef/11TJgwAR6PB6NGjcLKlSs7dO8DBzp0GhFRnyJNE9I0UtiyK4B2J8Y6IqKuxVjX8xjriIi6FmOdsz6fGG1sbMTJJ5+Me+65J6Xjt2/fjosuughTp07Fxo0bcd111+Gqq67CCy+80MU1JSLq/TZtSt6XWvBMbSJv6hjGOiKi9GGs650Y64iI0oexLnV9fij9BRdcgAsuuCDl45ctW4ZjjjkGv//97wEAxx13HN5++23ceeedmD59eldVk4ioTwiFHHZK09rakmVDLroTYx0RUfow1vVOjHVEROnDWJe6Pt9jtL3WrVuHadOmxe2bPn061q1b1+I5gUAAdXV1cRsRUbaQpp7yRr0DYx0RUfsw1vU9jHVERO3DWOcs6xKjNTU1KC4ujttXXFyMuro6NDc3O56zdOlSFBYW2ltpaSkAoKioy6tLRNTjpGGkvFHvwFhHRNQ+jHV9D2MdEVH7MNY5y7rEaEfcdNNNqK2ttbfq6moAQDiOEhFltsiQi1Q26rMY64goqzHWZQXGOiLKaox1jvr8HKPtNWTIEOzbty9u3759++Dz+ZCTk+N4jsfjgcfjSdrf1AT4fF1STSKiHjFyZPK+VCfgzrZJunszxjoiopYx1mUGxjoiopYx1qUu63qMTpo0Ca+88krcvpdeegmTJk1q97U+/zxdtSIi6h0KCpL3SUhIaba9QXZ/hckRYx0RUcscY500Upt3TWZXY7E3Y6wjImoZY13q+nxitKGhARs3bsTGjRsBANu3b8fGjRtRVVUFwBouMWfOHPv4q6++Gtu2bcPPfvYzfPrpp7j33nvx+OOP4/rrr++J6hMR9Sp79jjsNI3UN+oSjHVEROnjGOukTH2jLsFYR0SUPox1qevzQ+k3bNiAqVOn2j8vXLgQADB37lysXLkSe/futYMpABxzzDF47rnncP311+Ouu+7C8OHD8cADD2D69OndXnciot5m//7kfamuTJhtqxd2J8Y6IqL0YazrnRjriIjSh7EudX0+MXrOOedAtpLNXrlypeM5H3zwQRfWiogog5jS2lI5jroEYx0RURdjrOtxjHVERF2Msc5Rn0+M9iSlz09EQETUNj5ZzG6MdUSUDRjrshtjHRFlA8Y6Z0yMdsJJJ/V0DYiIuh5XL8xujHVElA0Y67IbYx0RZQPGOmdMjBIRkW3AAIed0rS2tqRyDBERUQ9jrCMiokzHWJc6DhrohE8/7ekaEBGlV1lZ8j5pmJCGkcKWXQE0WzDWEVGmYayjRIx1RJRpGOtSx8RoJ/j9PV0DIqL0am522GkaqW+UcRjriCjTMNZRIsY6Iso03R3rtmzZgsmTJ2PMmDGYOHEiNm3a5Hjcgw8+iNGjR2PkyJGYN28eQqFQSmVdiYlRIiKyffZZ8j4pZcobERFRb8dYR0REma67Y92CBQswf/58fP7557jhhhtQWVmZdMz27dvxy1/+Em+99Ra2bt2Kffv24b777muzrKsxMUpERK0zdcBIYcuy1QuJiCiDdGGsS7UXzccff4xzzjkHxx13HI477jg89dRTnX1VREREUV0U6/bv348NGzbgiiuuAADMnDkT1dXV2Lp1a9xxTz75JGbMmIEhQ4ZACIGrr74ajz32WJtlXY2LLxERUeuktLZUjiMiIuqDpGlCmm3PqZbKMYkivWgqKyvx5JNPorKyEuvXr487pqmpCRdffDEeeughfPnLX4ZhGDh8+HC770VERNSS9sa6urq6uP0ejwcejyfp+OrqapSUlEDTrBSjEAJlZWWoqqrCqFGj7OOqqqpQXl5u/1xRUYGqqqo2y7oae4x2QkVFT9eAiKjrSdNIeaPMw1hHRFkhslJvKls7pNqL5tFHH8UZZ5yBL3/5ywAAVVUxaNCg9Lw2ahNjHRFlhXbGutLSUhQWFtrb0qVLe/gFdA32GO2Efv16ugZEROklRPK+yOqEbUnlGOp7GOuIKNOkI9aluxfN5s2b4fF48LWvfQ27du3CSSedhN///vdMjnYTxjoiyjTpiHXV1dXw+Xz2fqc4B1gJ1L1790LXdWiaBiklqqqqUFZWFndcWVkZvvjiC/vnHTt22Me0VtbV2GO0E/bt6+kaEBGl18knO+yUiA6nb3Xr7tpSd2CsI6JMk45Yl+5eNLqu4+WXX8by5cvxwQcfYNiwYbjmmms6dU1KHWMdEWWadMQ6n88Xt7WUGB08eDAmTJiAVatWAQDWrFmD4cOHxz0ABKxRE2vXrkVNTQ2klFi2bBkuu+yyNsu6GnuMdsLevcDo0T1dCyKiLmYa1pbKcZRxGOuIKCu0M9Z1RS+aqVOnYtiwYQCAK664AtOnT+/gi6H2YqwjoqzQhe265cuXo7KyEkuWLIHP58OKFSsAAFdddRVmzJiBGTNmYMSIEVi8eDHOPPNMAMA555yDBQsWAECrZV2NiVEiIrJ99lnyPg6lJyKiTJKOWBfpPdOW2F40lZWVLfai+fa3v40HH3wQdXV18Pl8eP7553GyY3cfIiKitnV3u27s2LFYt25d0v4HHngg7ud58+Zh3rx5jtdorawrMTFKRES25maHnVyVnoiIMkh3x7pUetGUlZXh5z//OSZPngxFUTBs2DDcd9997b4XERERwHZdezAxSkRErUvxySLYY5SIiPqqLox1qfaimT17NmbPnt3u6xMREaWE7TpHTIx2QmFhT9eAiKgbSBMwzdSOo4zDWEdEWYGxLqsx1hFRVmCsc8TEaCccc0xP14CIqOtJKSFTGE6RyjHU9zDWEVE2YKzLbox1RJQNGOucMTHaCcFgT9eAiCi9yssddhpGasMpsmzIRbZgrCOiTMNYR4kY64go0zDWpU7p6Qr0ZZs393QNiIjSq3//5H2RJ4upbJR5GOuIKNMw1lEixjoiyjSOsc6UkKaZwpZdsY49RomIyLZ/v8NOU6Y2F02WBVAiIuqbGOuIiCjTOcY6rkrviIlRIiKy7dmTvE8aJqTRdmMxlWOIiIh6GmMdERFlOsa61DExSkREreOTRSIiynSMdURElOkY6xwxMUpERK3ik0UiIsp0jHVERJTpGOucMTHaCSed1NM1ICLqBqaZ4rxr2RVAswVjHRFlBca6rMZYR0RZgbHOEROjnaAoPV0DIqL08vmS90mktgqvRHYNucgWjHVElGkY6ygRYx0RZRrGutQxBHTC1q09XQMiovQaMSJ5nzRkyhtlHsY6Iso0jHWUiLGOiDINY13qmBjthIaGnq4BEVF6hUIOOyNDLlLZ2sHv9+OSSy7BmDFjcPLJJ+Pcc8/F1nDL5JxzzsExxxyD8ePHY/z48bjzzjvt8/bv34/zzz8fo0ePxgknnIA333wzpTLqGMY6Iso03RnrqG9grCOiTMNYlzoOpSciItumTcn7pExxyEUHVi+cP38+LrjgAgghcPfdd+Oqq67C66+/DgC48847cckllySdc+ONN+KMM87AP/7xD6xfvx7f+MY3sH37drhcrlbLiIiIgO6PdURERN2NsS517DFKRESt6qohF16vFxdeeCGEEACAM844Azt27GjzvMcffxxXX301AGDixIkYOnQo3njjjTbLiIiIWsLhhURElOkY65wxMUpERK1r55CLurq6uC0QCKR0m7vuugsXX3yx/fONN96IE088EZdeeim2bdsGADh06BBCoRCGDBliH1dRUYGqqqpWy4iIiFolZeobERFRX8Sh9I6YGO2E0tKergERUdeTZuobAJSWlqKwsNDeli5d2uY9lixZgq1bt9rHPvzww/j000/x0Ucf4ayzzsLXvva1rnyJ1ArGOiLKBuxFk90Y64goG7S3XZctOMdoJxQV9XQNiIi6njQlZApPDaVpNRarq6vh8/ns/R6Pp9Xzbr/9djz11FN4+eWXkZubC8BKrgKAEALXXnst/vu//xuHDh1CUVERNE1DTU2N3TN0x44dKCsra7WMOo6xjoiyQXtjHWUWxjoiygaMdc7YY7QTDh3q6RoQEaXXiSc67JTt2AD4fL64rbXE6B133IHHHnsML730Evr16wcA0HUd+/bts49Zs2YNiouLURRutcyaNQvLli0DAKxfvx67d+/GlClT2iyjjmGsI6JMk45YR5mFsY6IMg1jXerYY7QTqquBY47p6VoQEaWPqibvk2ZqQwfb+2Rx165d+MlPfoIRI0Zg6tSpAKzepa+++iouuugiBAIBKIqCgQMHYu3atfZ5t912G2bPno3Ro0fD7XZj1apV9qrzrZVRxzDWEVGm6c5YR30DYx0RZRrGutQxMUpERLYvvkjeJ00zxSEX7ZuMZvjw4ZAtLGKxYcOGFs8rLi7Giy++2O4yIiIioHtjHRERUU9grEsdE6NERGSrr0/el+oivFyol4iI+gLGOiIiynSMdaljYpSIiFqV6iq8XKmXiIj6KsY6IiLKdIx1zpgY7YT8/J6uARFR17NWL+RcNNmKsY6IsgFjXXZjrCOibMBY54yJ0U4YNaqna0BE1A1SXZkwu+Jn1mCsI6KswFiX1RjriCgrMNY5YmK0E7JsPloiygLDhyfv45PF7MZYR0SZhrGOEjHWEVGmYaxLndLTFejLPvqop2tARJReAwcm75Nm6htlHsY6Iso0jHWUiLGOiDINY13q2GOUiIhshw877EzxySKy7MkiERH1TYx1RESU6RjrUsfEKBER2aqqkvdJmeKQC5ldAZSIiPomxjoiIsp0jHWpY2KUiIhaJaW1pXIcERFRX8RYR0REmY6xzhkTo0RE1CppSEglhSeLRpZFUCIiyhiMdURElOkY65xx8aVOGDeup2tARNT1TDP1jTIPYx0RZQPGuuzGWEdE2aCnYp1pmvjhD3+IkSNHYtSoUbj77rtbPHbLli2YPHkyxowZg4kTJ2LTpk122Y9+9CNUVFRACIGNGzemrX5MjHaC293TNSAiSq+8PIedsh0bZRzGOiLKNIx1lIixjogyTW+KdatWrcLmzZvx+eef491338Xvfve7uIRnrAULFmD+/Pn4/PPPccMNN6CystIu+9a3voW3334b5eXlaa0fE6OdsH17T9eAiCi9Ro9O3meaMuWNMg9jHRFlGsY6SsRYR0SZpjfFutWrV2PevHlQVRUDBgzApZdeisceeyzpuP3792PDhg244oorAAAzZ85EdXU1tm7dCgA4++yzMXz48LTWDWBitFNqa3u6BkREXU+aqW+UeRjriCgbMNZlN8Y6IsoG7Y11dXV1cVsgEOjQfauqquJ6eVZUVKCqqirpuOrqapSUlEDTrOWQhBAoKytzPDadmBglIiKb01QtbCwSEVEmYawjIqJMl45YV1paisLCQntbunSp470mTZqEgQMHOm7V1dVd9yLThKvSExFRq6QpIVMYTpHKMURERL1RV8a6LVu2YO7cuTh48CAKCwuxcuVKHH/88XHHvP7667jgggswduxYe9+6deuQk5PT7vsRERE5aW+sq66uhs/ns/d7PB7H49etW9fq9crKyrBz505MmjQJALBjxw6UlZUlHVdaWoq9e/dC13VomgYpJaqqqhyPTSf2GCUiolZJmfpGRETUF3VlrGttIYlYY8eOxcaNG+2NSVEiIkqn9sY6n88Xt7WUGG3LrFmzcP/998MwDBw+fBirV6/GpZdemnTc4MGDMWHCBKxatQoAsGbNGgwfPhyjRo3q8GtOBROjnVBS0tM1ICLqeqaZ+kaZh7GOiLJBV8W6thaSoN6BsY6IskFPtetmz56NY489FqNHj8bEiROxcOFCnHjiiQCAtWvX4qqrrrKPXb58OZYvX44xY8bgt7/9LVasWGGXLViwAMOHD8euXbswffr0tCVMOZS+E4qLe7oGRERdT8rU5lRjj9HMxFhHRNmgvbGurq4ubr/H43HsSdPaQhKJDbovvvgCEyZMgKqquPLKK/H973+/Yy+G2o2xjoiyQU+161RVxT333ONYNmPGDMyYMcP+eezYsS0OzV++fHl6KxaWET1G77nnHlRUVMDr9eL000/Hu+++2+KxK1euhBAibvN6vR2679GjHawwEVEvdeyxyfs4lL53YKwjIkqPdMS6VBekSNWECROwa9cuvP/++3j66aexbNkyPP744526Zl/EWEdElB5s16WuzydGV69ejYULF2LRokV4//33cfLJJ2P69OnYv39/i+f4fD7s3bvX3nbu3Nmhe+/Y0cFKExH1Uk7tCQ6l73mMdURE6ZOOWFddXY3a2lp7u+mmmxzvFbuQBIAWF5Lw+XwoLCwEAAwfPhzf+c538NZbb6XvRfcBjHVEROnDdl3q+nxi9I477sC8efNw5ZVXYty4cVi2bBlyc3Pxl7/8pcVzhBAYMmSIvRVz7AQREQDnhoE0U9+oazDWERGlTzpiXaoLUqS6kMTevXthhlui9fX1ePbZZ3HKKaek7TX3BYx1RETpw3Zd6vp0YjQYDOK9997DtGnT7H2KomDatGktzkkAAA0NDSgvL0dpaSkuvvhibNq0qdX7BAIB1NXVxW1ERJnIcShZqsMtsmzIRXdhrCMiSq/ujnUtLSRx1VVXYe3atQCshOmJJ56Ik08+GWeccQbOPfdcXHnllR1+jX0NYx0RUXqxXZe6Pr340sGDB2EYRtKTweLiYnz66aeO54wdOxZ/+ctfcNJJJ6G2tha33347Jk+ejE2bNmH48OGO5yxduhSLFy9Oe/2JiPqCVIdTZNuQi+7CWEdE1PW6Mta1tJDEAw88YH9/7bXX4tprr23/xTMEYx0RUddju85Zn+4x2hGTJk3CnDlzMH78eEyZMgVPPfUUBg0a1OrqVjfddFPcHELV1dUAnOdsICLKNBxy0fcw1hERtQ9jXd/DWEdE1D6Mdc76dI/RgQMHQlVV7Nu3L27/vn37MGTIkJSu4XK5cMopp2Dr1q0tHuPxeBznDXJa5YuIKNOkujJhtq1e2F0Y64iIuh5jXc9irCMi6nqMdc76dI9Rt9uNU089Fa+88oq9zzRNvPLKK5g0aVJK1zAMAx9//DFKSkq6qppERH2GU9uDqxf2LMY6IqL0YqzrfRjriIjSi7EudX06MQoACxcuxP3334+//vWv+OSTT3DNNdegsbHRnqx8zpw5uOmmm+zjb731Vrz44ovYtm0b3n//fVxxxRXYuXMnrrrqqnbf+6OP0vYyiIh6BacAmsoE3ak+faSOYawjIkofxrreibGOiCh9GOtS16eH0gPApZdeigMHDuDmm29GTU0Nxo8fj3/84x/2xN1VVVVQlGj+98iRI5g3bx5qamrQv39/nHrqqfjXv/6FcePGtfve2ZZFJ6LM57Q4Kyfp7nmMdURE6cNY1zsx1hERpQ9jXeqElNmWC+68uro6FBYW4o03anH22b6erg4RUdq8+WYdpkwpRG1tLQCgsLAQd064CDmqq81zm40Qrn//OdTW1sLn42djX8dYR0SZirGOIhjriChTMdalrs/3GCUioq7FSbqJiCjTMdYREVGmY6xzxsQoERG1yjQBU6R2HBERUV/EWEdERJmOsc4ZE6OdMGZMT9eAiKjrMYBmN8Y6IsoGjHXZjbGOiLIBY50zJkY7ITe3p2tARJReHk/yPg65yG6MdUSUaRjrKBFjHRFlGsa61CltH0Itqa7u6RoQEaXXcccl75MSMFPYsi2AZgvGOiLKNIx1lIixjogyDWNd6thjtBMOHerpGhARdT0OuchujHVElA0Y67IbYx0RZQPGOmdMjBIRke0//0nexyEXRESUSRjriIgo0zHWpY6JUSIisul68r7IkIq2pHIMERFRT2OsIyKiTMdYlzomRomIqFV8skhERJmOsY6IiDIdY50zJkY7YdCgnq4BEVHXM0zASGEuGiPL5qLJFox1RJQNGOuyG2MdEWUDxjpnTIx2wrBhPV0DIqKuxyEX2Y2xjoiyAWNddmOsI6JswFjnTOnpCvRlDQ09XQMiovQaNSp5X2TIRSpbe/j9flxyySUYM2YMTj75ZJx77rnYunUrAGD//v04//zzMXr0aJxwwgl488037fM6WkYdw1hHRJmmO2Md9Q2MdUSUaRjrUsfEaCeE2+9ERBkjPz95nwHAkClsHbjf/Pnz8dlnn+HDDz/ExRdfjKuuugoAcOONN+KMM87Ali1bsGLFClx++eUIhUKdKqOOYawjokzT3bGOej/GOiLKNIx1qWNilIiIbLt3J++TMjrsorWtvU8WvV4vLrzwQghhTXRzxhlnYMeOHQCAxx9/HFdffTUAYOLEiRg6dCjeeOONTpUREREB3RvriIiIegJjXeo4xygREdkOHEje197VC+vq6uL2ezweeDyeNs+/6667cPHFF+PQoUMIhUIYMmSIXVZRUYGqqqoOlxEREUWkI9YRERH1Zox1qWOPUSIialVKwy3CGwCUlpaisLDQ3pYuXdrmPZYsWYKtW7emdCwREVG6tTfWERER9TWMdc7YY7QTNL57RJQF2rt6YXV1NXw+n72/rd6it99+O5566im8/PLLyM3NRW5uLjRNQ01Njd37c8eOHSgrK0NRUVGHyqjjGOuIKBtwpd7sxlhHRNmAsc4Ze4x2wgkn9HQNiIi6npQy5Q0AfD5f3NZaYvSOO+7AY489hpdeegn9+vWz98+aNQvLli0DAKxfvx67d+/GlClTOlVGHcNYR0TZoL2xjjILYx0RZQPGOmd8NkZERLaiouR9qQ6naO+Qi127duEnP/kJRowYgalTpwKwepe+8847uO222zB79myMHj0abrcbq1atgsvlAoAOlxEREQHdG+uIiIh6AmNd6pgY7YRPPgFOP72na0FElD6lpcn7ZHhrS3vj5/Dhw1t8GllcXIwXX3wxrWXUMYx1RJRpujPWUd/AWEdEmYaxLnUcSt8JgUBP14CIKL2ampL3cZLu7MZYR0SZhrGOEjHWEVGm6U2xzjRN/PCHP8TIkSMxatQo3H333S0eu2XLFkyePBljxozBxIkTsWnTJgCA3+/HJZdcgjFjxuDkk0/Gueeei61bt6alfkyMEhGR7fPPk/eZUqa8ERER9XaMdURElOl6U6xbtWoVNm/ejM8//xzvvvsufve739kJz0QLFizA/Pnz8fnnn+OGG25AZWWlXTZ//nx89tln+PDDD3HxxRfjqquuSkv9mBglIqJWSRldwbC1jW1FIiLqqxjriIgo0/VUrFu9ejXmzZsHVVUxYMAAXHrppXjssceSjtu/fz82bNiAK664AgAwc+ZMVFdXY+vWrfB6vbjwwgshhAAAnHHGGdixY0da6sc5Rol6GT2kIxQIARKQQgISEEJAhmf6UFUVbq/b/kAg6momJMwUZppJ5RgiIsCKdcFAyJpnWACQ0o5rEoCqKvB4PYx11G0Y64go3ZoPHkTtzipIaQJCQEACEFY7DxIenw/9R46EUNWeriplifbGurq6urj9Ho8HHo+n3fetqqpCeXm5/XNFRQX+/e9/Jx1XXV2NkpISaJqVqhRCoKysDFVVVRg1alTcsXfddRcuvvjidtfFCROjnTBiRE/XgPoyKSUM3QAEIGA1/PxNzThcc6TNc91eN/oX94eiKuEzBYQioCjsBE7px9ULsxtjHXVGbKwL/wPNTX4crDnU5rkerxsDiwdAURVEIiVjHXUVxrrsxlhHnSFNE4G6OggBKwGqCOzbuBEb7rgL0pAQKhB5zmcaQCQ/KgRQNO44fOm/F0JVNbuXnub1QutA8omoLe2NdaUJKzgtWrQIt9xyS9LxkyZNwpYtWxyv9cEHH7S3mm1asmQJtm7dildeeSUt12NitBN8vp6uAfVVpmFgX3UN9KCeUCISvjoL+oPYt7Mmaf+AIUXI8+Wlp5KUlZzyDVLKFlePTzyOMg9jHXWUYRjYXV2DUEKsE4g+EGxNwB/E7p01SUcOHFKEfMY66gTGOkrEWEcdFWxowD8X3YzGPTvhylXhKnBDzdFQt7MR0pB2s04IwDRhJ0UjDm3+BG/97PswQyZ0vwlTlxCKglN+cC1Kp5zTA6+IMkU6Yl11dTV8MR+QLfUWXbduXavXKysrw86dOzFp0iQAwI4dO1BWVpZ0XGlpKfbu3Qtd16FpGqSUqKqqijv29ttvx1NPPYWXX34Zubm5bb6WVDAx2gk1NQyilDp/kx8H9+6DqRuwm4UpDxGM/fASCT9HDpE4vPcgDtccBADk+fLRv3gAhyFSu5x0UvI+AxJGCkMuUjmG+h7GOmqP5mY/9u05AMOIxLp4bUWkyLQx1oBD6ZhAPVhzCAdrDkFAIN+XhwHF/RnrqF0Y6ygRYx21x6FPPsH7f7oTZqgOUkoE60JweRWoHhWqR4WiqVBcCgADQLS3aEukIWGGrKQoYPVAff9Pf8TGZXdDCBWlU6bipKvmccg9tUs6Yp3P54tLjHbUrFmzcP/992PWrFmora3F6tWr8eyzzyYdN3jwYEyYMAGrVq1CZWUl1qxZg+HDh9vD6O+44w489thjePnll9GvX79O1yuCidFOqKkBxozp6VpQb9dYV4+jBw7B0A17eETLDbjII8TkDyspI0HV+YMssleED2ysa0BjfT1y8nMxYPDA8FBEovbj8MLsxlhHqWiob8ThQ0cSeocmdItph2iCtI371jWisb4Jufk5GDC4P2MddRhjXXZjrKNU7HlnHbasWY26ql3QvALuAhf0QDiZmXBs3pBcGKEG6E3hNqCwevCZAMJTjkKoAt5+LiiKhBFIvp8ZMiGExM6XX8Kef/8TQ740ESdceRVcaeolR9mnp2Ld7NmzsX79eowePRpCCCxcuBAnnngiAGDt2rVYu3YtHnjgAQDA8uXLUVlZiSVLlsDn82HFihUAgF27duEnP/kJRowYgalTpwKwerC+8847na4fE6NEXaj+yBG7ByeEEpMQjW8sJnZnT0ycRsodE6sytvEo48+REk11DQj5AyguG8YGI7Xp00+T98nw/9qSyjFElHlqj9bj4P625wwFYh//OfcGben4RCIhhjbWNyEYDGJIaTHnIKU2MdYRUXtVv/kKNt5zL7z9NUhTQoTbdp5+LuhNOsyQCSNgQGg6NCGgulT0HxHuaacIiHA7TBqmtew3wp87uoFQQxBqSIFpRHuNKpqANKL3DzU2Ydebb6BhdxUm3fwraN6cbn391Pf0plinqiruuecex7IZM2ZgxowZ9s9jx451HJo/fPjwLpvOholRoi7QWHsUdYcPw9/oh6K6rJ3RLp9hZjinmdjkk4j+vjs3GqWUKfbBseYQCQYC2P3FNuT3K4RvQH+oGn/1yZnfn7zPkBJGCkEolWOIKHM0NjShtrYezY3N4T3JIx4S90Rn0k69J6nT+cnHSAQDIezevgcF/QpQUJgPVeOQQ3LW3bFuy5YtmDt3Lg4ePIjCwkKsXLkSxx9/vOOxUkp89atfxfvvv4+jR4+2+15ElF77N27Ann+/gZr174QXTBLwFnkQPBqE4tbhdisoKPdB8WhQ8nKh5uVB5ORCcXuh5BRAqC4oipVEtfqtSEhpQgabYTTXQ4aC8DQ1wqivh97khwyEYDSHEKrXEWwwkupTu3MH/nXLTzDsy9Mw/OyvwuMr7IF3hfoCtutSx+wIUZod3F2N2gMHAKFAUV2Q0oQQCgAJaSYHt9bbhq0VtqNMShi6iaP796Pu0CEMGzkCmtvd2o2JbBItTeCQfBwRZYeD+w/j6JE6ALHP/Jyng0mMVm0lRe2pYZDcs1TaX6XjIk6GYaL2UB3qjzZgaPkQJkcpZV0Z6xYsWID58+ejsrISTz75JCorK7F+/XrHY++8806MHDkS77//fgfuRETp9NkTq1D16nPQct1QPSqMgIQRNOEu1OAZUAjF64Va6INrwGBouXlQXblQPF5IAZiBJhjNtTAba2FGh/1Zq9ZrHqi5BXAVFkMIFdIMwQg0wmhugFF3GEbtEei19XDVNSFUG0Kw0bCjneZW4D98CFuf/ht2vvw8zlx8OzyF/XrqLaI+hu06Zxxr1AlpnOuVMsTBXTtxdF94tfjwim+mEQpvOkxDhzQNSNOI/mwYjptpGMnl9rkGDEOHYegwTcPepLS22HtZYzCkNZkNANMwUP35p9BDoZ57o6hPMWX06WJrm5ltETRLMNZRokMHY5KiMf+0WMnRyP8Q95NoMykae0RsEjT2fxEmJAyYMB0GfJmGid079sIIOTyQJHLQVbFu//792LBhA6644goAwMyZM1FdXY2tW7cmHbtp0yY888wzuPHGG9PxkqgdGOso0ZZn/oYdL/4dqkeDmusCTInc4hy4BhZA7V8Ez7AyeEsr4B4wEIoGSMMPU2+CEWyA1P3htld4sjNDhzRCkHoQMhSA2VwHve4g9PqDMJqPwAw0QpgGtJw8uItLkTNyHHLHjEPeqArklfVH3hAvXHkq3AUaVLdiB8hQfR3+ect/I1B3tMfeJ+pb2K5zxh6jnVBR0dM1oN7kYPU2HK7ZA6G4AKlAUQSkEYJQFJjhpCQgIRKeR0i7c40Id48Jfw03LuM+k8LlQsjwyHxhf2hFhmdYp0krFxrpxhMesmHf09BRtflDlB53ElzsOUptMCFhpvDcMJVjqO9hrKNYRw4dxdHDddEdQoTjTsspz9i0Zdu9RaPzZseuTB97DZnwE+xj43uZSlNiz84alJQXQ3PxT15qXXtjXV1dXdx+j8cDj8eTdHx1dTVKSkqghacxEkKgrKwMVVVV9iq7ABAKhTBv3jw8+OCDULnydLdjrKNY2194GtuffxqqR4MZMqAoAjllRTACJlx5+VByNKh5bmi+AghFgwwFIY0QDH8D4JcQigqpqNaiuIoC4fLAbtsJQJgmICXM5gaYwfDIQl0HpITi8kBxe6H5CqHmF8A9YCC0mt3Qj9YiVOeH0RyCjMlaherr8O/f3IAz/uc2eHz9eugdo76C7Tpn7DHaCU5zNlB22r/jMxys+sJKQJo6pKlHe3AaIcAIAUYQMHSYRgCmEYSMbHrIeoJoBCH1YEx5eF/MVxghSDMIaeiAGYq5dvQY0wxZTyXN8JNJIwRp6uHkqAFTDwIA9GAQOz/eAD3osAQiZS2nhoEM935OZaPMw1hHEYcPHcHhQ0fj9kV+76Nzh3Z0HfpkkfRnywsARFcCTjwm8rNhGti7cx90nT1HKSodsa60tBSFhYX2tnTp0k7VafHixfjmN7+J4447rlPXoY5hrKOIna/+HduffxKKS4XiUqDme2GErOHv3sH94SrywV08DIonB2ZzA4ymWpiBRshQADDDQ95NE8LQIRQVijfX2jzWMHvVnQM1zwclzwfh9kCEHywKxXogYvoboTccQaj2APSGIxBuL3LKRyHnmGOQWzYI3kH5ULyaHXCFENCb6rH+9p8jUHukB9856m3YrksdH593wqefAoMH93QtqKfVbPkYh3Z9AdWdBzMUgNDcsOYT1RG7nm70n5GeoDGzqInYJmVsuYhbgT6y5FL82kzRc6JPImObpbHl1tmmoUMIwAgGsP2Df6Li5DPg8uam4+2gPs5pKJkBCSWFp4ZGlj1ZzBaMdQQAhw4cwdEjtfbPkTATO1weSE5QtmeRpdaOT76u9U9pz5YVjaux1xAQ4eRoDUrK2HOULOmIddXV1fD5fPZ+p96igJVA3bt3L3Rdh6ZpkFKiqqoKZWVlcce98cYbqKqqwt133w1d11FXV4eKigqsX78egwYNSv3FUYcw1hEA7Hj5Kex44RlACLj7eaH7DQgh4B7og3vIUGgFAyCNEPTGWshAEyAlhMsD4cmB6smxeopKqzeoNHSYQT/QHAw33hI+X1QNwuWB4vIAioJInzVphGAEmiD9zYChwwgGoeQXwjVoOLT+xVDyqgBtHwIH62EGDSiagFAEQo31eP/uWzDhB4vg6Tegm9856o3Yrksd/zok6oQ9m9fjUNVW64lhyA/F5YHUA8nNN9FCw7Cl/UA4IdrSea139hatXNc+1zQgTR26HsIX61/DyIlTmRwl7NuXvM+QEgpXLyTKWgf2H0btkbqkkCUgoCQ8sGtvIjRV8QswxQ/Njy4kIO3HgErC8HvTMLG3ah+TowQgPbHO5/PFJUZbMnjwYEyYMAGrVq1CZWUl1qxZg+HDh8cNoweAt956y/5+x44dGD9+PHbs2NHm9YkoPba98AR2vfUPCCHgKsqHUe+Hq9AL98AB8JRUAKoGM9AIo6kOMhSE5isCNJc1Ui/QDCPQDDsaCgVQVQjNBeEugNPCuFIakKGQdZ495ZkAVBWKOwdKv3xIaUI/ehBmYy0gTSjefHiGlFtxTlMQPNIAGTIAxUqOButrsfG+32D8gv+Bp5DJ0WzHdl3q+JchUQdIKbH7o3/i4M7PoLpzrOHwKiCDzQCcE5MytgdLQrk1P6iMK7MHJ8aUJZ8r4s61rxX9wa5v/PnhnqhSwggFAWlgyz+fx+jJF8CVk9eu94Iyy969yfu4eiFRdpJS4uCBI6g9UpdUFllIqSd+7xPnHHVarMmElRyNHCshYRomaqr2YUj5EGhcrT6rdXesW758OSorK7FkyRL4fD6sWLECAHDVVVdhxowZmDFjRgeuSkTpIKXE9heewO51L0GoCpSCXMiQDs/QgXAVDYa7aChCDYdhHjlqDY3PyQdyC2AGmiGb6gAlkgDNs4fDQ5pWz1Fdh6m3sOCtUCBcLgi3J9pmMw1IPQTT3wjTNCFcLqiFRTADzTAajsJsqodaMADuoSMBlwvCcxD64TrI8HQxQlUQrDuKjct/jfFX38w5R7Mc23WpY2KUqAN2v/869m/7GELzWCu/A9Y8n3FHtdJTFG306myjl2nrPULb28tUWkNCDAOfvvYkjv3Kt+DyMjlKUZykmyg7HTxwGEeP1Ecf64W7Y7a9tnzXS0yOJu6LJEcjvUcjf+KbhomanTUYUl5sL4ZDBHRtrBs7dizWrVuXtP+BBx5wPL6iogJHjx5t932IqP22/+Nx7HnnFQiXBpgSiscFbfBgaAOKoeb1Q/DIXshAI5SCAdaCSXoQQg9CKArgzrEuIk3IoD9uOrNoZxSngcvSilihYMJCuwJCqIDLGpIvTQMINEHR3BD9BsNoqIVefwiaosAzbAyguQCXBuNwLaRuDfuHAIL1dXj/nltw6g8Xw51f2KXvH/UtbNc541+ERO20f/N67Nv8DqC5ITQPzGBzOOkowqvBh2c+c5rn05pZG8nPYGLmAbXnDU0uF47JTRHzJdr4i1JiLpdYHjMrnBGCqQfxyT8ewQlfuxKK5mrlXaBswiEXRNnn6JE6HD1Sn7RfSBF+/tazqdGWFmRKTI5aX+OTuVZydB+GHlMCReE6pGRhrCPKPrv/9TJ2/fNFqLleyGAI2oBCiJwCuPsVA24NRsMBCEWByC+C9NdDqC4rmkTmEoUBewSfUIGYz4fI7NdACxFThCd9sc+R1v+lHj5HWHOPSmklXY0QlNwCa3Gm+iMQqgZvyWgoqgshVYV+6IidHJUS0Jsa8N5dt+C0n/4Wqtt5DmTKPox1zpgY7YTx43u6BgQAzQEd/oAOCUBRBArz3G30xuycfZvegTRMKJqEGWiyhkyEE5YyHNCs1QWtxln80HgJASWaQI1JWNqLRohwb9HIh1HM+QKwkqMSydcWMXOwxazrZC3GZH2N6/VjVdSqZ+SJpDShB5rQeLgGBYNL0/q+Ud8VGYaaynGUeRjregfTMGAYhrXQg6JA1bQujXVHE4bPh/u9tPDwrvs59Ri142RCclTGPRS0YqFpmAj4g8jJ9XZjrak3Y6zLbox1vUMgpCOg6/ZneZ63a9t1u//1MhSXBhkyoA3sD8WVC5dvAKQMAjqguHJgohlmqAmKO8daXNe0xiMIRbGaa1JCSjPahgOQ2FFFyki7K3anNa9o9GGjSDgH0Uaeqln3CTVDePMggs3Qjx4EhIB3yDEQLg1CURE6dBgyqIcvbyJYexj1u7ej3zHHpvmdo76Ksc4ZE6PUp/3rP3uw+rUtcbHnmBIfvn/JSXC70j9/2IFP3kPzoRoIlxtmQEKoGmTsnJ7hXqPS7lETiWfWk7vYtllsjxsRU24HzoQcp508FdF+LzJ2v71XxMfVSJI1pp5JDUqhWIsx6UEAwPZX1+CEb/2AvUazUKHDaBuZ4pCLbAugRN2l7vBhHNqzJ/yT9QHvycnBkGMquqTHY11dA0KhSI+VCJEUXnpaS8nRxLLokkyRiGl9f3jfYZSUD2Gv0SzEWEfU+/ynah/e+HgbhADCU2aipH8+LjljHFxdMC/0gU/eQ6D2IKAIaL4CQKpQc/MhFQHFmw+YBozGWkAIKC4vYOpWa0u1enFChh+7xXZOiesBmkBKa6h9wgr1VuI3HK9i1pxIGp0R7j0KPQC4vYAIwKg9BCEF3AOGI7KqfejgYRjNAcCwEq/bXnocJ195I1SXO03vHPUVjHWpY2K0E7ZsAU49tadrkT2aAzr+8vx/sGV3LYC4kQpxtu+tw0///LbdgMvxaJh93rEYV1HUqfsf+M+72PL8wxBuN1QhrLlkdB1xWdnY3p1Jo9bDDS87Txk+wG6vhUOqiDTb4nu4RC8Y2xAMP12MXEpEhwzG9epJGkqf8MQyfG1pSkg9hObmRnz86B9wwmU/4tCLLHPMMcn7wg/D25Rd4TN7MNZ1L9MwsK96DwJN1uq21jzWZtJxgeZm7PjPx/Y814qqYnB5BfJ8nZtLrK6uAfv2HrSjhYTV1BIiKXL0OsmT0MSvWB/bcAUAPWRg3859KC4vZnI0yzDWUSLGuu7lD+n4+7uf4JOqo6irNdFcb2LssR64NGEnRQFg75EGLH7onzAF4PUo8Ho0fGPSGIwe2rkV1w/8511sfX6VtdCSPwQzpMNV4IGSkws1twBmoAlGUy2EK9wOMvXwmdL+oLDymzHfp8LhQ8YpkRo7vN7uMRvtRQPoQQi3FzLkh15/CIAJl2+QtdhTMAipG5CKAcWtwX/0AD5acRtOqvwZ23VZhrEudUyMdkJjY0/XIDscqmvG6tc+x/a9tQjp7fsVlQCaAjqW//0/KPK5Mf20Y3D6cUPaXQfT0LHl6RWAW4UMBmEKAajRJ5fOq9Dbhc51izwxbKHc3t3uhZZE+NoyuTzu52gPGqvIqo8ZCgJSounAbtRsfAvDTpvW8v0p4wSDyfsMmBAOiRmn4yjzMNZ1j1AwhEN79yHQ1Gw3iKyvLf9exTamTMNAzbYvoGoqBpQMg69oYLvrIKVEzd4D9hBGa/qW3rDUUsuceo3Gl0cTvCZkeCGm6OsLhXQ0HG2Ab4CvO6pLvQRjHSVirOsetU1+vPTBVmyvqYNummhqkmhuNGGEwp0wHc5RXQIu1erB1hwI4bHXN6Mgx41zTirHKSOL212HSLtO5LihenMg1SAUrweu/gMhVBWh2v2QoRCUvAJAD9lD3gHYI/Fik6LdJ9LhJfw1FLCSowE/QrUHoOYGoOTkQSvwQQaDgK4DqgIhBJr27cbe9a9j+JnTu7nO1JMY61LHxCj1akfq/fjDmg/Q6NchzfjgEzsNZyoO1wfxt1c/Q2NzEF+ZUNauehz94jOYhg4RNCHcbpiBQLQSLWh1Ppy2eqZ09LodLUusj65DGgZq3nsbJaeeA0XlR0W22Lw5eR9XLyTqWnoohJod1TANo+UheDZpz2kW11iDtc8IhXCgagcMXUf/4vY9CGxqara/NxHuKSoj/wB610D61MUmR6WdHI0+HGyobUBB/4IunceOehfGOqLuV9vkx9/e/Bg1hwIQAtC0+Lbc3n0hDCtxQVWsXqNSStTXm2j2S+TnR9sqUkrUNgWw9p0taGgO4qwT2rcuQu3OLZCmAcXlggyFoObnQ8nNhVQAs6kWkBJqvg8y6E84M2aYfDcmRaWU0ZGGSOj8EgxA8eTAMHSYzQ1QcvMh3F5ohf1gNNQBpgkZsuZF3bfxbQw946ts12URxrrU8beCeq2jDX7c+dT7aPSHhy4kDk1HTHI0dnScQ7smdi7sv/97OwCknBwNNTZg473/D1quCsUNyGZ/cuMpMoReJi62hLiEZGy5NTo+vsw6XCSdF3tuSz1RY6/t2INVSghFOCZI7XNjy6RE0+4qVL32HCqmXZx0DmWP6FDUto8jovYJBUPYu6MK0ogkOWPmwxQCUiqI7zUamTvFDJfH/uZFvz+8ZxekNDFgyNCU6mEYBnbv2m9fRYG0FvvrA8nQtnqNxopODxCZsEZCDxmoO1yHwqLOTUNAfRtjHVHXqW30Y8UrH0KaBkwp0dRgYtBAFR4PEHALmCGJuiMmGpsCUBWBUEBC90soGpBToCIYlHC7I+2taFvnhfd3QNeBqeNTS46GmhrxyaN/AhQFZrMf2oAiuIqGwFU4GIG9X0Dx5EAqIjkpGl4JScB56HuShEV0Hcvb8TAuLjkqlLjzZdAPNacAZnMDYAp4issRPLwHUg9CP3w0vFgU4D+0D7ve/gfKpnwt5ftS5mGsc8bEKPVKRxv8uGPNBjQHzJi1gwSgyKQOMnG5PIdrJeb7AOC5d3dAKMDU8W0nRxtqdkPqIRjNBqSuRi+WGMti41vyRGfJO0Xsty2XwZ6kO8VyEV/keK4QiEsmJ9TTmkJVwggaOPjxe0yMZjlTpvhksduHFBH1baFgCHu27UT0z9TwvNHhOcykbPvPVzs5mvj7J4Eje3ZDSKB/SdvJ0UAgZPemjC5WFD+jdW9OkrZnSH1kPdbYWUebG5qZGM1yjHVEXeNogx93//09uD0C/mYTuV4FzX6JXdU6TN1E4KgBM2DCDJiAEenIAUhVAVQBvUmiuV7AnaMgJ09BTq7Ve9Q0JUxT4v/Wb4dpSHz11Lbbdc0H98DUQ1ByvBAuF4QnB1BVBI/sBlQVRihoL+0Qv95DGwlRpzgc2d/aOYmcGq4x9xfhdS4i51uXkJAhP6AImMEm6I0KFE8ehOYBNBUww8P/dQOHPv2AidEsx1jnjInRTihr32hsStHRRj/+8Mx7COjWh76iWA+6IslRoaLVINPq73C4l6YQwPPrd0BVFZx94vBW62MEApCmhBkyYRoyOr2L3VqMTTJa2VE7nMUkSuPzj06J0MhTwJhr2+dGeg9F7uN0bvQSsUUynAgVTh+AdjWU6E3DL1Ga1l0DdXXJ51FW4ZCL7MZY1zVCoRD27qi2e6FYbRsz/BkeTd0BiA6NiP2oFwKQSvQYgYQAaF3j0J5qQEj0HzKs1fpIM9pjVQ0naGM7tIRnPc2I+UatVyrD6/dar8gwsmsuLUrGWJfdGOu6xtF6P+58ZgMMacKUCkK6iYY6CaPZRPBQCHq9DtNvWp0aVQXCrcA0JRCUkH4/YAJBlwI9T0OoUEOoUEUoZCVHI7Os6brE3/+9HYoiMPWU1nuOGnrI+kYAitsNYRow/E2QTY1QCgohgn5Ehqu3ORKhpWRoZyReM2G6s9jkbKRNa01HbgAuD4y6I5CmCTUnF8LjheL1wqhvsHuNGoFmUHZjrHPGxGgnDOjcYnjkoK4pgLv//j4CIWs5QqFY7URFSYw7sUPQ468R22RLKhMxG4Dn3t0Gt6bgjOOce9Pozc3YcOfdgK5DaCI83BxxQ/YjK8DLlhqMsb1IE86LG1rv9AJi99nt4oRh+wKxhTEvPnwXEWlyi5gHkDHDO+KGcsRmVgWkKdF8aA92//MtDDvzLMf3iDIfh1xkN8a69NNDIezdvhvSNKMNr9geonHBK7YXafjQyP5IL/9Iuk+o1ir1kalZICCliYPVOyEUgX6DnWOdaZrYW3MgsW9Mr194qaOivUej8U7XDTTWNSLPl9eDNaOexFiX3Rjr0q+2MYA/PPMeGpsMuD3AkcOG1YExYKKp3oBuCOgy/BDOMO0eHcKrAB4AqoAM6oAuIRt06E0GjGYX9KAKvVCF26vAMACrzWLimbe3we1ScOYJzg8CjWAAX7y42mr3mBKmHgKCfqhuN4TXC6OhFqonYdX2SDsplSRo7LGxYnt5Wjviy2LPTfzebHmopIy7nwRCAaj5hTAb66DrISuGu1wQLg0yaK1uFWysxcFP3sPA405t/bVQxmKsc8bEaCccPAj4uIhp2tQ2+vHn5z9AIGRACAFFkTCtdl6rv5ntHaEAhGNKOK6sfecLaJqCL41OXqRi74b30LjvINy5gKop8XWJaasmJSWBuByj00h6GdszNCbh6XR+/L1ivo8kWUXcj9a10UrfnsTqxvwQvY6AaZgw/CY+/dtjTIxmiZNOSt4nkcJTcyClY6jvYaxLLz2kY++OvVYPzdi/Tu1Gl0PjSYR7hkoTkTEEsQlVxPYeFSogDUhpAjKSeJXYv+MLAHBMjjY0NMEwTHveTevOmZkUBWL/pAg/aAxHvtpDtUyMZgnGOkrEWJdetU0B/Pn591HfqENRJOoOmnC5FQSaTQT8JkIN1rB5JUcDcjTAlFb4UwGo4ZaIqgCmaoU/ISHDCdKQKSFDgF4AuHIUSGnaoXDNW1vhcis4bUxJUp2OfLEJocZaqPm5ABQoqguQgOlvguL2QnW7rJhqGoAS01hMmqqmnY1Pe0EMO+A7X7ul7xPWgEj6OfLFCEFICeFyW++JaUJoKhSX27qzogCKQNVbzzIxmiUY61LHxGgn7NoFjBjR07XIHG/+pxr+YGxSVEBVo+WpPKRrucy5MDI64e/vbsX4EYOhqfHDFRr2WgtRhPyAqZlW2zRRJKkZM1w+MYcJ0UJes4UOprGNtthhjE7JzNjR9ZF7yfhDouVCJNctpi5x05VKQBoSRsiE/8hRhxdOmUhx+G+cQy6yG2NdetUdOmr16rSnSBHhRl0kKWp9GFsj4yOZ04Re/uHzECmRkeuFP+HtD/NoMhUA9m/fgsKBQyASftGDQWtooYiMLujDKdH2LsQU+zoN3eiSOlHvw1hHiRjr0uufm6vCSVEBf4MJ1SXgbzAQapQw6nUIt4Car1oJSBOQppX4NIMmEAz/jmnCGrGnAopQAAEYLgWyLgQ9cryuQstRoKiAENZIh7X/3ooJI4uT2nX+owcBKSG8XgACSk4elLx8mI31kIYBQLFCqKJEYyjQck9QW0c+E9o6Jzn56fhzbGNSKJCGDikUSH8ASm4+tDyX1SvXr1h/e5gmQo2cJi1bMNaljolR6hX8QR2f7T5kLxakKML+RW5touvUH9iJFstU1fp5e81RjB4WP45GD5nQQxKqaj08TJQ0ND2xrJWWZasLEXbwPKfV6Dt7TWkCQT/nXssWW7cm7+OQC6L0MA0TTfVNkZ/shpaMDIVHJPCZkPaHduwjrCirzRbZF5lr1ERktVohFJjhpKi1OJP1Od5w9DAKBgyMu5YSDgJWZx1pP+zLRNGHg7HjI8I/ywx90ZSEsY6o6/iDOj7ddQgCEqZhQtUEmmsNhGoNmI061P4uuPIV6E0mpD/8G6UAUAGtQLPyk4aEGZKADsiQFSeFJqAVqDA0AfNwEIY0rAeJCqDlKVBUAbdHwDSBL/YcwdjSoviKSRNS1yFCIYicHEDTIFQtfI1Ib5xwTJYJ4+7seNuOT4DWVp5va1V6abZQnjgEMdxGi1lxVxEqDEWB0FyQegBCUyEVAehWL1KTDwGzBmNd6pgYpV7hlY+2IWToEMJaPC9CRoapO2jrl7U9oxwUAaxZ9wl+9PXTkOtx2fsNQ0HQDygqHNm9LB3uFbuoYEtznbZUFvs16doiPk7GPzSM9CRKLo97oChaLnMqN9hWzBoNDU57UxtykX0hlKh9Du8/DDN2vjBpQpqG1VMzbq4WpeUV6VuZ68xK9ZmQ4aH3Vq9TRBtOENiz5T8YOWEyNJc7ep6M9je1WqeZ96EfP1IifjgjP7myD2MdUdd5aeM21Dfp8HoF/H7A32AidFiHNCTcJR6oHoFQvQnVo0LJD38qmxKmAUhdAobV2UPLVSCU8MgKU8IMSsighKtAga64YRwMwWwyYOZYDxU9OeFrSeBvb32C//7m6cjzRtt10Kwh+1LXIXQdMtAMIxSAvaiFlPbDRUsKv+uJjamWenc6lTs1xBLLk5KjznUSMtqZSBohaxrVhiOQpgEzEIAZCAAhHQCg5Hrbfl2UERjrUsfEKPUKVQdqoaoi+oHuEDMiYhORLSUkpYyfpS2xTCbsU8Mx8HB9E3I9hXbZoar9CPgRN6Tf6ZodKet4r9AO3q+V8lYfWEpANw2E/AG4vJ6WD6SMxSeLROkRaPIj0oNTSiNmeF7kiGiPD2uIPZD0m9XqUz/Yc4pGesDImKH0kYZfsLkpLjGq6zqiE63I6LwsGSTm1dnMcO9YJTz8XsJaiEpxGntGGY+xjig9qg7UwjAlDEMiFLRWoFf7aXDlWG093S+h5lmNMntEnrCeDwotPJIiMpDCDMc1AQi3AHQrQeoqVKB43dDrTRi6CdO0FmISwpqKzZTAofom5Hmj7To92AzhdgGKAikii+oq4YaeNQy/xcV029K5Od/af7/ki4QTyFYLWKgqpBkz/Y6iQIZ7HwmPG6YegqK5WrwaZS7GOmdMjHZCQUFP1yBzSGlCEQKaFt8RJvHhWnuSpCpkq+WxC7JH5t6MbQhWv/8p3nn4BfhyU0+MJj7YS0w4xpYnlUXOcSiLPbcrEqORGzsVSwkEAjqe++/f45K7f976DSgjSZHaCNNsC6DZgrEufawGiwBgtjIXZuxM0Clf2TpTRB8wWjsUa84xU4c1D2nsPSzNzX7U1taHF17qy7OLtoOM9BUFpJDhmV2t131o7yEMGjaoJ2tHPYSxLrsx1qWRNOFxK6irN6zp0XIEvLkK9ICVdnTnCSshqiT22Y88EAw/MBQxHWYibSiXYq0oHwByCxU06YDisnqUQgIutzUlW2K7ruHgHhza+TmUvDzr2ppmJUYVxRpGb+qQQrXOSEuiMk3aWxcprYklhQJhmtbr83itn6UJoShQcvOw/V/PYeTZl3RJlal3Y6xzlhGPxO+55x5UVFTA6/Xi9NNPx7vvvtvq8U888QSOPfZYeL1enHjiiXj++ec7dN+RIzt0GjnQVAFNBVyKgKYIuFQBTRVQFWvTwj9H9muqgKYJqKqAS7MSqi7NGoZvb3Hl4S3mfDXmGqpija6IbaR+tPZNhAzAHwD8fiAQBAKB8NfwllgWdChrsTxSFr5mMFweDLV8bjD8faQsrl4xW1x5IOberZQFWzs3BGx7470e/C+EepJsx/+o6zDWZQJpD2uXLT2169DvUWx/yOhfu9IeIC8QHSIfn5Ctq7PGWUXmxRYZ2Fs0wp4uIPblJYwi8Tf6u7VO1Hsw1vUOjHV9X8iQcKmAxyOguQVyClToOqDlCGhuBUIRUN0Cqiagaoq9KZqA5orsj5ZpLgWqS4GiKdA0BapbheZVEAoI5AxQ4fJa84sKASiQUBVrfQjDiI4fPLx9M4SqQOtXBNXXH2pBfwiXOz6BKiWkaTr2qGttzYtIeevrYrRcHilrrTyVe4fTyLBfj6JCyR8AtaAQqq8Qmq8ftMIBUDw5qN29rdVrUuZirHOWlsTo3Llz8eabb6bjUu22evVqLFy4EIsWLcL777+Pk08+GdOnT8f+/fsdj//Xv/6F73znO/iv//ovfPDBB7jkkktwySWX4D//+U+7721w3uK02LrnAEzTsJKemoBbs5KZbi0+EepSo/vdGuAKJ0BV1UqsujQBt8vaYpOgavhcd7jclZAkjVzXpQq88+kO6OEgWrv/KACgKSjRHAKagxL+kERzQMIflGgOJzEDIcAfBPwha78/XB4MWfsCkURnMLxFkqux5waiX5v9CeWx50bOD58XWx5JxjaHE52x+yLJU384yWkndwMxx0TKY5K3kQRuKAToOhdgygalpcn7ZDu2TMZYR53RUNsA0zTCCyHFbHE6+FsUl8eUcbuFokJRNAhFCW8q9m37FGZ4/KKuG9bvr5Qxc5T17d/mlnq9yphyEZMzVuJKKRsw1rWMsY4649+f7MWBI0GEQhKqAqsd5hVw51gxSNEE1HBbTdUEFJeAolqbqgqrXBNQPdZxqiagaIAa3hQNUF2A5rGSq5Ekq6JZfU+lsBZfCoYk1ry9BaFw+yXUWA9AQri8UDw50HLyoOQVQrjcsLqjquGcYnQe79iEZeyIDJlQFpu4dCprqzxWS+UtXTfufOsNgD1vnGIloTVvPtS8QiieHIjwtAHS0NP+7556H8a61KUlMVpbW4tp06Zh9OjRWLJkCXbv3p2Oy6bkjjvuwLx583DllVdi3LhxWLZsGXJzc/GXv/zF8fi77roL559/Pn7605/iuOOOw69+9StMmDABd999d7vv/fHHna09AcD7W6vh1mJ6ioYTo3aiMyZZGt0UuDUF7khiU43vDRpJqjqVuVooc7kEapuasevgUQCA35Dw6xIhE/DrEv4Q0BwC/Hr4a0iiKSTRrMtw0jS2DGgOJ0WbQ+GEaszXyPHNMeWxW1x5MH5/czgBG02qRhK11hYIJ3ID4Tra5wWjxwVi6ugP7/eHrHOtr+HygERQlwgaEo2hnv3vhLpHUVHyPvvvrLa2bq9t92Kso844euBo+DuHeV2iP6BDvTUjQw8dCgQEoKgQQoEQ1p99oaYGNB45FHdkeCq3jt2/D4n2q7Xea9P+OdNfOcVirGsZYx11xtp/bUNjg0RDk4lAUMI0YU2X5rJG52kua1NdVu9Ql8vqVWpvkZ+16PcutwLNrcDlVuxkqRY5P9zzFBIwdIlQSCIQkGhuMrHvcDM+23UYACANHWbADxnyW0lPQ4dQ3bA/+e1Y3MKDtZgEZe8lrRWFpTWEHtK0EqAiPE2OsBZ2lKEQZDDQ05WlbsBYl7q0JEafeeYZ7N69G9dccw1Wr16NiooKXHDBBXjyyScRCnVdNiUYDOK9997DtGnT7H2KomDatGlYt26d4znr1q2LOx4Apk+f3uLxABAIBFBXVxe3UfropgGXqtgJS3fC5tGsLTYJGtncmgJPeHMnbB5XdEtMrEZ6lkY2V/j6QgjUN1vD6Py6gSbdRLNuJUAbQxJNenRrDn9tDEk0ho+JJEoj3zeGvzbpQLOOuK+NkSRpCGhy2sJJ0GY9uSySUI2UN4eiW9y5ifsj3weT790YjJwL63UEo+WR+1HmO3QoeZ8pAFPIFLbur293YqyjzpBmbI8RM37S6BYngE71l8rh2b49WXd0JXYpTUjD+m812NwUPiy2h6nMiuRgYiqasg9jXcsY66gzQoYBKYHmJonGehP+JhOmLqFpVu9Ol53YDCdIY5KljptmbS5XZIskTSO9SK0OLnpQIuiX8DdZiVGERwYcrm8GYA0fhmFABvwwA00wmxtgNhy25uAWsJKJopVYmqjFkR8J5Z05t6PlkWl7hABCfugNR2E218P0N0H6myF19nbJFox1qUvbHKODBg3CwoUL8eGHH+Kdd97BqFGjMHv2bAwdOhTXX389tmzZkq5b2Q4ePAjDMFBcXBy3v7i4GDU1NY7n1NTUtOt4AFi6dCkKCwvtrdSpTzJ1mKZYCcnEZGZiUtPtEvAkbJHepG4tmkB1SqTGJlA94Z6miZsiBFQBqOEPgYA00GiYaNSjW0PI2prCPzfFbA3hrVGXSVvkvMaErSEUf83YrVGPHteUsMWe53S/xkjC1mFrCEo0xCZtQ/GJXKf9zbpEk8Gh9Nmgujp5n9WTKpX/ZT7GOuoc1VoAodW5PGUL3ydISqYmLFoRMxjKGllnWo2hyBynCddOXKgiE8X2CpUJ+ym7MNa1jrGOOiovV4HmQnjRWKuN53IrcLutZKbLbSVHYze329oS97vCPUKdNrfHKvd4rLUmhGolXEV4+L6iRJOpAOwRE5ASMA1I07AeUgKAGWnjxPx2xyYeE6fASUxItlbemXM7Ug5YCy/GzmduGlbPUTNmvohs+CAjxrp2SPuq9Hv37sVLL72El156Caqq4sILL8THH3+McePG4f/9v/+H66+/Pt237HI33XQTFi5caP9cV1fHIJpGOW4NIhQ/sU/8MAWRUNZyU7Htyakj5zr/qgsABbleAEAAJppMHVo4kCZeWxHxHxlxvW6EcFiRPqG8hXOVcLnTuVZjOrnuUkr7ek7lIuHeLUksEzH39ksmRrOVkAqEbPs5WirHZArGOmova34yICn+tBK3klaZT+k8h/2mmTR3qNuba98jfDcoQsmasVOR5aoiQ+qz5oVTixjrkjHWUXsN7O+CojqX5ajpTLUIIJz01DQBb07yEZoKFBVYBUIR1jBzwBpibsZ/5rfWPupTzMjDT4fXJBAzUiV7PscoHmOds7QkRkOhENauXYsVK1bgxRdfxEknnYTrrrsOl19+OXw+HwDg6aefxve+9720BtCBAwdCVVXs27cvbv++ffswZMgQx3OGDBnSruMBwOPxwOPxdL7C5Ghc2VBs2rErPIF0pH9LJLGYOCF15IM++TpSAjLciGwpsQgReYIZU4Zo8MjzulEyoBAAoEuJRkMPJ0AdgktM1ZKqE1fWchK2rRDcrnvGXbtj92ztj4KAyVnps5WAgJBt/8HY3meLP/rRj7B27Vrs3LkTH3zwAcaPHw8AqKiogMfjQU6O9cfsTTfdhEsvvRQAsGXLFsydOxcHDx5EYWEhVq5cieOPP77NsnRgrKPOKBxYiCP7DyMyk6dFRhd6cJD6XGZWYs++VEKeT4j4Xarbg/z+AxPvBlOaSQ/uMl2052w2vWpy0lWxrq9hrKPOOGtcGf71yQ4IKWEAUBVg/1ETLi3aqVFRrPydcGiXJWqpXErA7QKa/MCAfAWqGp4r25QwTOv3tDDXg2OK+4dPiJwnoyttxc4rGjvFaF9MktqN5PDPpoSEGf37QlXD7TxryErGJIKp3RjrnKUlDVxSUoJ58+ahvLwc7777LjZs2ICrr77aDp4AMHXqVPTr1y8dt7O53W6ceuqpeOWVV+x9pmnilVdewaRJkxzPmTRpUtzxAPDSSy+1eHxr0tjezmojhw5GvtttzTOqKva8otYQdwXu8H5NCZdrin1s4uZWFXg0FS7FOj5yrltTo8dpCjTV2uw5SVUFHlXgtNEV0FTrMWfB4H5oljr8po4mU0eTEUKTEUKzGbvpaDZ1NJkhNMX8HLs1hcubE7YmU0ejqaMxfF6Tw9ZoRO8bv+loMpLvFX9P3eGeITSaITS2eL8QGmOuH7lfoxGCH+wxmr1EO7bUfetb38Lbb7+N8vLypLLVq1dj48aN2Lhxo50UBYAFCxZg/vz5+Pzzz3HDDTegsrIypbJ0YKyjzijoXwAhrFaL1ThMzFzGtsray2FetMh1pIQ0JYSiQmgeCNWNktHHQwnHOk1roWtPhmK/UGpZ18S6voaxjjrj5GNKENQFpKJADW85bgGPS7EWyHVFF8O1f9bCi+9Ghs8nrAsR+d7jtjZ7mjVNwO0CFEVAC7f9XJoKj0uBqghMPXEEXOEYp3lyrFm0DcMaZm4a0WSiNKwv0rTyiGZr83f2MlJaSVAp7fpLKQEZTv6ahrXpevjBqZUU5ar02axnYp1pmvjhD3+IkSNHYtSoUa0ukrdlyxZMnjwZY8aMwcSJE7Fp0ya77LzzzsNJJ52E8ePH46yzzsIHH3yQlvqlpcfonXfeiVmzZsHr9bZ4TL9+/bB9+/Z03C7OwoULMXfuXHzpS1/Caaedhj/84Q9obGzElVdeCQCYM2cOhg0bhqVLlwIAfvzjH2PKlCn4/e9/j4suugh/+9vfsGHDBtx3333tvndkzhLqPK9LBSBhmNHkm0z4LmlKlRZ/sM9I6Dkjkg6PFAsBqMJa7T7iqzOnYc39T0JAhJ8gCEhIa15uWE9RzPBCFYlPVGJ75oiYvSJmR3R4fGQH4spNGfvQMtqjSMSUKyLm3rFPCWNfW+wLTvp8Ey2Wi5gjTACnnd/+PzKp78nPT94npGL/FrSmvUMuzj777HYdv3//fmzYsAEvvvgiAGDmzJm49tprsXXrVvh8vhbLRo0a1a77tISxjjpNhKODENEP+bQ0vhKjTqQnqgBgIBINhIiMkIj+rvp8+Th6tD4p5mZi8kcmfI0tiSw75c1lT7Js0J2xrq9hrKPOqm8wobklcjwCmiLgdQsYJuDWRIuhxW7GhL9pKQIJAUAN9zwVQK5XIKSbQHgqmJApoRtAMGRCqNHf1aKRJ2Dff9ZB6uG5RUMhKDm5EIoaHm0YboNKEzISP2UHFiRMPMFu58nWfzY79reAjGvIWfeXugGhCEjThNnUDKiKNRrENCAVFQJAYenoDt2P+pbeFOtWrVqFzZs34/PPP0dtbS1OOeUUTJ061XF0X6SzS2VlJZ588klUVlZi/fr1AIDHH3/cfjD39NNPo7KyEh9++GGn65eWxOjs2bPTcZkOufTSS3HgwAHcfPPNqKmpwfjx4/GPf/zDnoi7qqoKihL9lzp58mQ8+uij+MUvfoGf//znGD16NJ555hmccMIJ7b73tm1AeOQndZJLUaALAVVV7WFtTn1fpJQtNmwiccGxX6OMXtPpPAFAVZS4YQUnnHYCLvreDDzzl2fsJmekVAJ2stT6OTJzqbBrr4S/TxjRaCdWI+cKGTk/NkkZczcZvXbk5nZ94kZNiKRzI7VDzLlW8y82XYu48sTmtQAgXCr+58FFoMznlENMdQruyDGJK7x2ZNjanDlzIKXEaaedht/+9rcYNGgQqqurUVJSAk2zQpcQAmVlZaiqqkJhYWGLZelKjDLWUWdZn/Ey+jkbGSMoYyNbBxKScYEmPsUZ+0hQShPSNONukZPjRb/CfNTWNtiRqIO16DUSF5ZKPsCacifyN4EJQAlHx0FDB3VDDamnpSPWZSrGOuosQwLBZhOGKeB1K9AUa/i8pgo73CkiGqNi14+IdAiJHUMR278l2rYJk0AQArohEdQlQoaEYQC6ER/H8ovLUHzCJNR8+DYQ0mEaBmRTE9ScXEBVolOx2W0pKz5Hfkx56Hli+ImZzg1AcgJUymiDK4XcaNIUO04LPQlhjRSxVqKCDAYAVbNeo6ZBuL0YNe1SUObrTbFu9erVmDdvHlRVxYABA3DppZfisccew69//eu441rrCDNq1Ki40Qq1tbVpmxYi7Ysv9YRrr70W1157rWPZ66+/nrRv1qxZmDVrVqfvm9D2p07oX5AH/WidQyxpOUI4JTlTOk8mn2clRgVyEpI3xaVD4VcMKGbyR0MqHyep702tXCSnWR2+cy5v/X6xKd/Yu0mYADSXArfX3ea1qO8zHZ4sCKT4ZDF8TOIiBosWLcItt9ySch3efPNNlJWVIRQK4Re/+AXmzp2L559/PuXzMxVjXd/nyc1BU70Bq5VlthDEOtBrJNxqTE4ISmvubZjhBZisX3C3J36VCpfLBVXExpPMTPzERjoZboxG5tqS4R5KQsnM107x0hHrqGsw1vV9I0sK8WnVIRg6AJeES1UgAXhdSmzuzpbYiRKIH0UXSXxEOsnEJkIUAWi6hF8HEE6KmibgUoEB+fGxzjOwBGpBfxiNdVCCAUjDAFRr1GL8jcPico7R+zq1M9tMzrQW2hPu09K1ndu3MW1De9JWBTBDkKoG4XJbi/CqKoTmgvB44PINhKKxi3Q2SEesS0eHF8B6sBU7fVpFRQX+/e9/Jx3XWkeYSGeXOXPm4LXXXgOAtLURMyIxSn1f+bAhaGhsgu702wvnZGa0rLXkaesNzNjrji4fCrcr4VfCUCCkBkNxnoeltcajaKVeqUhKVUqr2Rt/y7buEeltmnjVFM6N7ZnKhmLW+Oij5H3tDaDV1dVxc5G1N3iWlZUBsJI11113HcaMGQPASrju3bsXuq5D06wn31VVVSgrK4PP52uxjKi3GFBchObGZkhTtxo69qrzTuMSgLgGT6tk/GmxJdaEaeGkqMSQkcdBcyf/TkamZ7Gvk+Ef+5FRF7EvM8NfMsVIR6wjImcXTxqN7ftqoWkmPC4F/XI1GCbQGDAwIF9DUDdhInkmmchCgS0lGcOTwkACyHUpqG024FIVFOQpqPXr1sJLOmAqwIzTRyM/J75Th6K6oOUVQqgqZCgAmNbcotB12HN9x1UqvoLReJ0sMWGbNGWaw/GJ5S21aWUrdUoWXlgpMhLS6wFycqwEqeqCUDWouQ7jqykjpSPWpdrhZdKkSdiyZYvjtdI1D2jEQw89BAD461//ihtuuCEtyVEmRqlXcLk0DOxXiENHa1s9rtUEaSuBoq0cpSoEigp9Sfs1xQWX9MKU8YnR1hOuHU3UOpfFNotli4clJkxTuado8TwZt18gF+wtmt1SXaXaOsbn88UlRtujsbERoVDIHibx2GOP4ZRTTgEADB48GBMmTMCqVatQWVmJNWvWYPjw4fbTw9bKiHoDVVORW5CLxtr66FB6APEf7Nb3suUPfEtcAy42sRo9R0Baiy4AgGJNylZQNDjpUqaUkJCQMhMG0juLfacgog3suE+3zHvZ1C7ti3VE5Kwgx43jygbg06qDUBUBn9cFVVidMwO6CZ9HQzA8pFwV4WH10npAZ4TjmgJrNJ8iBBQRXg8J1m+fSxGoCxrw5ajo53UhoJs4Iq3V6N1uAdMEjh0+0LFuiicHUATMgAoz4AdiFyGKxFSnjG30oBZft1N7s7UOPM7l7ehY41RPacKaeDQczVUNitsLxZsHobkhhICisrdodmtfrEu1w8u6detavVpZWRl27txpL463Y8cOxw4srXWESTR37lxcffXVOHToEIqKilJ4TS1jYpR6jUED+6O+rsEOiBFxQxdEcrCIlEvZyhO5Nh6KlBQPipuzKGJY2VBo8CJx5lLZykD+VhO0XZlQbeGQls6VrZ4Xv3PwwCGt3J8yXVf1olmwYAGee+451NTUYPr06SgoKMCLL76ImTNnwjAMSCkxYsQI+6kgACxfvhyVlZVYsmQJfD4fVqxYkVIZUW9RWNQPzfVNME0JKcOr4yI89C2pV4jDB3QkIZq4qr2U8avemwZg6pCmbt0HwMDSEY6xzu12Re9mz7GWWeLnzw4vpohoghSQ0FS1x+pHPY89RonS55wTy/Bp9WGYpgndMDC4IBf9vW7UNDSjOWSgX44LzUEDQUNai+Aq1kJNHgBKeM5P3bQ2wCr3agoEgMaQieI8Dwbn5OCwvxlHQgYCIYlQ+DnglBPKoakOsS4nD1aPStX6qggIqUC63JChoDURagujF1PTTcGzpWSr3esV1rB5IQBFtZKjmgeKywMpJVQOo89q7Y11nenwEmvWrFm4//77MWvWLNTW1mL16tV49tlnk45rrSPM0aNH0dTUhKFDhwIAnnnmGRQVFWHAgAGdrh8To50Q/vdBaeLxuDFiRCm2bauO768SO8QgZg61xHKZMPohtjzc/ya+x0jY4IFFGDywv2OdzjhvAkpLy7Cven9Mr83Y72IXMhIx5TKhXCSdG/k5Uh6fbI2tq9NQSglpv0vOwdGE2eLTIDOc6G2pXMacKyCw4H+udDyOsoMCFQraThgo7fyDcPny5Y77WxtuMXbs2BafSLZWRh3HWJdeLrcLQ8pLsHfHbmueUaHANHRAGhBCCccxE4iJHQkTkAFA+IFgcu8Wq6OpCchw4lUAgIKiYWUYMDR+OFREfn4uVEWBaZoxc7/13V5xAk7zrVqcUs+RXrKFAwu7oXbUW3VVrKO+gbEuvQb6cnHNhePx11c/RH1AxxFXEANzvSgpyMW+hmbU+UMozvOEe4paaxropgFdCpjSSoTmqwpckSHhQqAxEIIOYHCuGz6XC0cDfjTrBpqCBlQFyM8R+NLIUpw2ZphjnQoGD4fqdiPQXAsz0AyzsQFSmlDzCiD1EITLA8e5ZFpLRHa1VKZmk+FoJgWkYUAoKqQpodcfhVrgA4SA0DyQ0oQQAsUnnNbl1abeq6di3ezZs7F+/XqMHj0aQggsXLgQJ554IgBg7dq1WLt2LR544AEALXd2qa2txaxZs9Dc3AxFUTBo0CA8++yzaVmAiYnRThicPBqNOimSHN25Y3dSmf2rmdAAjGs2ivhj48oSAosAUFTUH4MGt/yEISc/Bzf+6ce44Zu/hSnNmPRl8geFQGy9HHq2xtZHJh5rlYqEc2OTpZFEpbSbcdEkqoh5pdEzYpOw0Wsn9Md1uHbsMEygtKIC5848J+n1ULbpu0kS6hzGuvRzedwYUjEUe7fvAqQB6/fLDPfsVJD80Cu+d2jc0DsZ6d0SXb3CKjXD15IYMHQYioaVt1gfRVFQUjIIu3fvs++Wib/x8Wnm6Cs0AWiaijxfXvdXinqZTPwvn1LBWJd+Rb5czPnKSXjsjY8hRACmlBiU68WQglwcbPLjcCCEHFWFW1WgCgGPqkBRFEhI6IaEIU3okYeBUiLf44IqFEACtcEggiZQHzCgCEBVgPEVw3DamOEt1kfVXCg95Wxs++dzMNUApGJdS5omoKhWbDUjoy+A+KghkhOhTknLziRoUl2fIi7uy+Q/FxQr6SU0lzWaRHVDGjogAE+/weg/bETH60gZovtjnaqquOeeexzLZsyYgRkzZtg/t9TZpby8HO+++26X1I+J0U44cgRIQ69iSuDxuFFRMQzVO/cAcIgRcT1IW5aUnIxbcRfoP6AQAwe13e3am5MDr6sfDDMEMzwcMZrgjK9FZGhetHbxCczExm7cdzJ5b3RPQsM35lqR6yc1ZGViojM+jSxj6hKtd7RcCAFFaCjiMPqsMm5c8j4l/L+2pHIM9T2MdV3D7fGg5JhS7N1eZY2iNwErRRf5vFeQOI1LdP4z+x+IxpVIw81qQEoICEVBv8FDMHB4y0nRiMgiexKR81teNKI3a3PRxfDX2P64AgKqw7BLylyMdZSIsa5rDPTl4fJzTsLDr32IoB5AQDdQnJ+DQbleNASDCBomTEhoENClhColXIqAS1MgFA0hw7TmwQ5PnWaEez2GDIG65iD8uonmkMQJFSU4bUzbC26qqgYltxCqYQCQMJvqIY0QoGqAEQKECkgj3O0kHINFJAHpNPYQ8cnQTi6+m3Qdez7x2AeikW+s0SV23NND1s9GCMLtgZJfAAEBxe2BcOdAdXvhyi1IT/2oT2CsSx0To52wcydQ3nZbgzrA7XGjtHwo9uysQWTq0Nbn7nTiMAQxrF9/Hwa0MHw+0fDRg5Bb0B/+xqZwb57kvjRSJiQghdVLx05OxjViZXi4ZGLfU4fem/Z5sa8hsV8pYA+7jIyBlLF9Rp0Tt4n3jZ8WwKqHorgw+YIJrb4/lFncDutsCagQKQy5EIlJHMoIjHVdx+1xh5Oj1QBkTHI08tUpMSkT1l2KHSph2gVCCBQOLkHRsJZ7z8TyeNyINLDMmNmnEmNDJoikkpWYyW5y8rw9WynqVox1lIixrusUFeRi9jkn4/4XN6I5YMKvmxhWkItCjwdGOOmpCAFTSvh1HQFDWj1IhYZczYVIFxHdNCEkUBcI4Yg/hLqAjuagifEjhuL0FJKiAODJ80FVXZCeXGtV+lDQmldUSpi6DqFKyHAiVIbbVcIpSRlp68W2v4D47zsiblHGhHniEtfhiPwz0l6UEnB7IP3NAKyFpoQ3B8LlheLOgVA1FAzknBHZhLEudUyMUq/l9rgxrLzESo620jBre8hffGlhfx8GDOqXcj3y++XiF3+di8WXP2QPXZB2AjJSg/j6xDdoE5/wxfTsiSmP733qkL5s5dzkBGr80PrkxGq4LNKQjhN9v0rHDMXMa78Kyh7btyfv44IURF3H7fFg6DFl2LO9ytoRs5Cg9QDNjB82JyK/Z5EkqIw+nDPDCzkB6FecelIUsIY4DRtejF27asLzSoWH7IvE5GjbUbcntNVTNCJS88iEBQLWMPrCosIuqhn1Rox1RN2ryJeL700bj2XPbURTMIigIVFamIsirwc5qgZVKDAh0aSF4Nd1aIqCHFWDW1EBCeiQaNRDONDUjAMNARxu0uEPSZw2eji+PC71jLbmcqN8/GRs3/AazICVHDLqa6Hm+aB482D4G8OLFIrwUzQrUSqAhCRlpDdp+B+tJDBTGoLvKPmaSWfKaGJUSgn4m6Hk+WA21sOEH6onx76/y5uLQeVjUrw3ZQLGutQxMUq9msvjQkn5EBzcexB6UI8ra2EwQ4sURaCwqBC+/u0fQjD2S6XwFg1EqKEZDiGp1QAX35s0xfNaOUe2FUw7em7CeUJ14bzZX4bm4iq92aS2NnmfIlQoIpVJurPrySJRurjCPUcP7tmHYLMf8Y2hxHnNJKQZ/ryW4elUZDRJqqgq+g8pQb/B7Z8GJTfXi2jaVUKNmT07fqqY3iXVpGjkKAVWb1GLQF5hXp+cNoA6rrtj3ZYtWzB37lwcPHgQhYWFWLlyJY4//vi4Y9atW4drrrkGABAKhfDlL38Zf/zjH+HxeNp9P6LeaHC/XMy/4GQ89vqn2H3Ij8ZAA/rlNqN/jhs+jwseVYVbUZDnckNKE35DR30oiKaQjrpgCA1BA7VNBo426nCpGs4eV4ozjnVeaKk1eYVFUBQNiuqCEAqg6zDqj0Dxeq2kqJSAIqLPAducXsYpBrVneH1b7bOEo+Km1YnU0RrtJxXAqDsMGQhCK+wP1ZMLoWiAlOg/7BgIJbuSXdmO7brUMTFKvZ7b48LQihIYuoH9u/bbCdLEpSlaJICiIUXIK8jtcB00l4prfnMu7rnp5daDW5sJ0vafZz0JTC7v8PVSKQdQOmYgzv3OKW0eR5lPhP+XynFE1DGRnqOGrqNm5y6EAsHwwASREOzCvVjM8Hykkc9zRUFxWTny+7c9d3ZLhBAoLhmEmr0HwoPqI7/Vff93O7b9KGJel8utoaADD0wp83RlrFuwYAHmz5+PyspKPPnkk6isrMT69evjjjn55JOxfv16uFwumKaJmTNn4t5778X111/f7vsR9VZDBuTh+m+eiobmIO7/v4+wtc6PgYU6+uVoEACaQiZChkSuS0GeR4VumKhtNnC00UBzUEJVBC45YyyOLx/U4ToIRcHwEyai6oO3IDQNcLmgHz4Kze21Yp8esvYLBSL2OWVMTlG0OXQ+1V6hrUhMitq9Q6NlMvKwNBSC4vFCGhL6kTpoA/pBySuAmpMHoXngyfOhaDgXXSK261rCxGgn5OT0dA2yi6qpKKkoCfeUsRKDdUfqUHe4Pu44zaWieHixtZCEsAJXOnqCTJo+GlBV3HPz6y1+TMjEJ3gxBABpmi3WRZrWUxnHcinta0fKRUxZ5N6x58qY4Jl4bvQ86Vg+dER//OqRWXB7+RFBnIsm2zHWdS9V0zBsZIUdE6SUOHrwIGoPHLCPEUJAy8lFyTEVVu+WcJxLR6zz+fIBCdTUWMnRvvCHsYhdfCJFEgKapqK4rDg8bJKyXVfFuv3792PDhg148cUXAQAzZ87Etddei61bt2LUqFH2cbm50Qf4wWAQzc3N7MncjRjruld+jhvXf/NLCOlmeG0jiTc+2oXn3tkBAFBVa7Tf4MJcXP31CfBoKiAARShQlM7/XhQWl2L4iWdgx/qXoek6hNsNs7EBar8BMPyADIUg3K6YM6I9SLvl9zKxE0tSUjSmzen3QynsD9PfDGEacA8rgfDmQS3oBzMUhMeTi5ETp0JR2a4jtutawt+OThg7tqdrkJ0iK+cKCPQb2A/5hfnQdd169iEEXB5XlwWsSdNG4OnHPkHN9iPxAUpEVwIGIvEqJqCFJ/G25qcJ70sIeHaVY8tjnkJGE6GIv7cSUx6Za9QMrzkfnvcm7tqxPVAj1xYx5wqBq27+CpOiZFOQ4pALmV0BNFsw1vWMyHA3AWBAcTF8/ftDD4XsMrfX22WxzleYj8OHjiAUMgApwyGudyZo2rMKvUR0CL2ExIDi/kyKkq29sa6uri5uv8fjcRz2Xl1djZKSEmia9XeVEAJlZWWoqqqKS4wCwI4dO3DxxRfjiy++wEUXXYTvf//7HX051E6MdT3DpUU/g786oRwTRhejrikIKSXcLhXF/XOhdtHndP9hI3Bo1yg0qjsh9RCM0FEYDXVQ8gtgmiZkIABh/05H2k/WAroiNjmb1OZz2N+a2N6nDmRcUjT6t7Y0DEhdhygohOlvgtkcgOr1QssrhJY/AFAUQHOj9JSzmRQlG9t1zvgbQn2e5tKgubrvP+XzvjkWD//5A3sFQztJKQAIYeUyo101E86OrFwIxK2VFC5qKWkaTZCKuIBolYX/IZSkMjtZamdJE68be4D1ZcCQfFSMLWrrbaAMVVKSvM8acJHKJN29M3FClAk0txua0/KiXaRf/0Ic2H/YHr4nIkP4e5FUk6IRkVXoJQBNVeHJ4dyN2Sodsa60tDRu/6JFi3DLLbd0ql4VFRX48MMP0dDQ8P/bu//wqOo77/+vc2aSSUIyCSGEBJOAISRYRAOKFuyt9pLv4t3eRa+bdbEVNb2EUK/aXS97VfRqrdptwW29e7m2ftdUu7gWS9kVbblda9eqXWtFFARFUCAUyCgkQSKEn/kxc+4/JhkymUlyksxkfpznw+tcJp/zOZPPOQl5Zd7nx0dLly7Vc889pxtvvHFUrwmkkvF5WRqflzVmX2/ClGp1nD6pQFeHAh1n1NncKne3X2ZunizDUKCjQ0Zm5rmLSXrek1mB8OJo6M69wYqbGvjOwIGEFUWDryDJkuX3Bz/LypZ1ol3dpzvlys+RmZ0jMyNHruxcGRlZyszxKjs3f1jHBOmD93X2URgdhffek/7H/0j0KDDWFny5Sp9+elq//+3efg+/7gm8aBv17TfQzIS9hdLeaXKjFknDJ+AIXQEaWu3ueQ3r3JhChdE+X9vq9xo98gqy9OD//z/l4WpRx5o0KbLN9kO6bfRB6iHrnKlgvFddXd069ll7T0wEZCb5DKV9TvP1KZoaoVhVz3NTXaapkincQu9kscg6n88nr9cbah9okqTy8nIdPnxY3d3dcrvdsixLTU1NqqioGPBr5Obm6sYbb9QzzzxDYXSMkHXONL6kTJ1nTumIv0tWV6es7m51th6Vu6tbroJgQdHq7JSR6el7e17wLVTgXOoYphEqjobNAxFxrUvvXXvn2nq36S2a9j42LuxFeguykix/QIbpkgIBWWfPKhAw5Brnkbokw5UpuVyyZCoj06OpF82V6eLvc6fifZ19VD9Gwe7V8Ug/S26ZJblMvfRCY58CZu//BvjB6Nuvf/W0bxFTiqh/hv0/YtveAmm09f3WRXvtnvHkF2bpB//nGuWPH7uztEg+x45FthmGW4YxdFwYhrNuuXAKss65iiaOl6RQcdRKoitHB8rangfa9HnuqBWaaMCQ5HK5VDqlRC63s/7gR7hYZJ3X6w0rjA6kuLhYc+bM0dq1a1VXV6cNGzaorKws4jb6xsZGTZkyRRkZGers7NTzzz+viy66yNb+YPTIOucqnlotK9CtI92dsvzdUkDqamuTDMmVXxAsXHZ3yczIUOjuvz6n3KRgsTJirsTB9LmoprdYag04kZNxbn3AkuFyy+rqkGG4ZLjcUvdZWd2m3AV5cuXmypWTp4zsbJ0/+wq5M7kzwsl4X2cfhVFgBAzD0I1LL5SR4dLvX9wXvk4a/K+r/oXKsHVDbDfgulFsZ0kFE7L0/R9epYJCnjzvdAcORGu1N3thUlRLAMSMYRiaWFwow5COtbUrIEumJMNKjuJof2GP0+4JP1O989AHi6IlFZMoimLMs66hoUF1dXVatWqVvF6v1qxZI0latmyZFi1apEWLFunVV1/Vo48+KpfLpe7ubl1zzTW67777hv21AAyPYRgqmTZThgy17lWwwGlK3Uc/k3RcrvHniqNGRoZkuqSAde5Zo7135VlW5CPPgrM1Rb8opk9x9Fx7T9HVPFdltXrmgDAMUzICCnR1Bm+h7+qU//gJGRkZyigsVMb4Yrm9hcrIzlPlnCuV4eFiF6fjfZ19FEaBUViy5AJlZLv0f//zXHHUGmWRcvjbDfGaQ8gv8Oi++76gwgkURRGdabhl2jizaDrszCLgFEUTC2UYhj47ejys4JiYC6yi3XbRd+25UfX+4W9IMnuKomP5THKklnhmXU1NjTZt2hTR/uSTT4Y+rq+vV319/bBfG0BsTJr2OZkut1r2bpdhumW63er6tE3mqVMy8wtkdRoKnD0ruVwy3cEZ663u7uDGhinDZQbnfOjVc4WnrEDU92uWjOBEi/0nbApY5163d33Ar0BXlwx3hly5+QqcOqnuY+1ye3OVMaFYmYWlcmV75c7K1vm1Vygji/d1iI73ddHx1yEwSv97UbUys9za8MJeSZF3sg9oxIXQERZeo6zPy8vUA9+7QuMLOKOIgRmGS4aN58zY6QMgNU0oGi/TMNR29JgsWQooUQ/mNzTwbfThRVGzd4oBl6nSKSVyc6UoBkHWAZg4tVqmO1MtjTtkZGbKyMhQ15FPJddJufK8UmaWAmdOK9DVKdPjkeHxyOruktXdLaurKzg5by/TlFxuGaYZfH6o0eeW+N4CaNRtXMGv7XLL6uoMTgCVkSl3QaGsQED+9uMKnDkjz3mTlVE4SZnjz5MrI0sud4amXnwZt89jUGRddBRGR6GmJtEjQLL4X39TKcuw9NzvG8NXhG6riLKRYSo0q31UvRMl9V/f75aNwQy03jCUm5uhf7znCuV7KYpicMHygp3ZC5nIJB2Rdeg1fkKBLEmf9RRHpeSYtbRvObT/RIiGaai0YhJFUQyJrHM2sg69JpRNlWG61Lo/W0ZGtgxXpjoPfyKrq0OmJ0vmuDxZ3V0KnDge3MDtlpmVJfUUkqyAP3iVqN8v+btldQUi3woaRqhwqgwz+KzQ3m27uxU4fTpYMDVdck2YKP+pE+o+1qbA2Q6Z2TnKPH+6MseXypNXLNPtlunOVMXMi+XOzBy7A4WURNZFR2F0FLK5Qh19fOX/m6augKUXXtsfbAgloBH2v/BnjPaZfj7qekmWodDvpWjrpKjrLVnB9X2fDd6zPi8vU//47XkURREhK8qPhGmaMk0bsxc6LECdgqxDX4UTCmRZAR1ra49aHI1HwXToK0SNUJqem2ZJMg1D500plSuDoijCkXXoj6xDX4WTyyXDpaO+bJ3N8MgwTXUe8snf0SnLsuTKzZN7fJECXR0KdJyV/+TJ0MzxwWeBSobbLSMjo+fp3D2MYE5ZgZ6iacdZyQrehSHLCt6mn5EpMztHhjtDAX9A/hPHZZ0+Lcvvl6tgvDIKipU5frI8+cUyXBlyZ+WorGaG3BkZiTpcSFJknX0URkehqUm68MJEjwLJ5H8vrFJAll5642DkVaK9j0WzwpvCpjDst36wbftUQKNua/SfGrFnfV5ehh78h3nKz+M2C0SaMSNaqynZCkdnBahTkHXob0JRoSzL0rG2E7L6vOUzjMgCaV92iqX9b4cfbPb5aDPPB7cL/uFPURQDIevQH1mH/gpLJ8uSoaMutwwzQ2ZWjjqPfarAsc+kQEBmdrYMlylXVrYsT5YCXV1Sd1dwY8uS1dmpQGdn8DmiLrckKziJk79n9nlTMjIze26rDwTvJjSM4Mf+bgUsK3iDoN8v1/hCyTLl9uTInTtB7hyv5M5URnauzps+naIooiLr7KMwOgptbYkeAZLR3y6crqopBfrLtkN6b8/Rcyv6FDCDV3MO53mkff4f2qjPG1Cr/7q+2/XMPJ/v0dVzy3Tl3PPkzeU2C9hnGi6ZNp4zY6cPUg9Zh2iKJk5Qdna2jh8/odMnz4TNHRErAxVFz62Xwq8WteR2uZRXkKe8/Fxmn8ewkHXORtYhmgmlpcoaN07HW8erPcurDO8RdRV8qs4jh+Q/0S7D5ZJMU4Y7Q2ZmpuR2B68GDfQ8iTsQ6PncLxmmrEAgeEOf3y+ru2dWe3dwoierd+ImSwp0d8kw/FJGplzZ42S6s+XOL5Ire5xc2XnyeAtVUFImb2GhXG5KOrCPrIuOf0VAHNTOmKjaGRP1l/cO6Vf/uTtsnWUFzxYOeGXoQAabc6n/LfZhDJWX5Oo7dXOU5eGfPAb3/vuRbYbplmEO/bNjyB+HEQFIVuNyczQuN0ftx07oSOtRWT1XbvbV/zb74d5i39u/f5HUUOQVqJmZGSqtmCTTdNZVDhg+sg6AXeO8Xo3zepVXWKTWpoPqym+TO69QHUc+VtfRI9KZM5J5RoY7Q4bbFZxUqefqUMOTJTMjR2bfiZckyQoo0O2X1dEhq6NTftMIFVktv1/yB2QFDLlMyV0wXpmFk+XOmyB3lldZ4/JUWnm+TJezClcYPrLOPqokQBxdcfFk5WRl6P++8Vc1Hz3d0xr+Rm6o+ZOGLIhGvOK57bI8LtVWF2nJ31RTFIUtfSfG7GUYRtgtsgOx0wdA+vEW5Ml0mWo7+pm6OrtD7dFuhQ8WR4Nro4l8Akz4bfLqt16STMNUTm62CovHUxSFLWQdgOHKKyyUK8Ojz1qP6Ex2gTK8k9RV8qm6jh+R/7NP1d1+XP6Tp+Tv6JL8ARkZbrnHZcuVN06BnueU9r55C/j9Cpw9o+4TJxU40xFMuUy3zMxMmeNylDGhWBkFE+XOm6DMcRPkzi6Q25Oj7LxcFRYXyXSRdRgaWWcflRIgzmbXTNTsmona98kxrXlhl46d6ozsZKP4aXedIcnlMnT5hSX66oJqmaazfqkh9gzDLcOwcWbRcNaZRQDn5OaNU27eOJ05c1Yth47I7/eHTY6kPh9Fe/KLInr2Fb5F6GpRI/h1CyeNd9wf8Ig9sg7AUHLyxiknb5w6TpfoyKEWdZ4pUVfBMXWXnFCg87QCp9vlP3VM/rOnZHV2yH/ypPwnTkqB9nMv0luYcrvlKSoMXlXqyZErt0DunHyZnnFyZY6TOytfGZ5cGaZb4/JzNX7SBLIOo0bWRUdhdBSKixM9AqSSaecV6Icr5kuSTp/t0qMbtuvQp6dD660BKqCh+BviylLTkG76mxm67HMlMRgtcI5hmjJszF5oOOwh3U5B1mE4srOzNHVauSTJ7/frE19z2FWkgxVFo4l2rWhRyQTleseNeqxAX2Sds5F1GA5PTpbKqqZICl792eJrVseZ0wp0n1X32Xb5z7bL8ncFJ1SSFPB39Txn1JDhcsvofX6jFZDhzuy5ItQr0+2RYbhkGIYKSyZonDc3UbuINEXWRUdhdBQmT070CJCqcrIydPfXLtXJ053BN32GJBn6qOmonv7DR9GvEu0z63zlZK/q/ucFPRNLBG8z9GS4lMnsu4gDbrlwNrIOI+VyuVQ+ZbL83f6eamjwd8SZU2f0aUv0mU763n7v8WRqYumEntvjgwVSwzS4XR5xQdY5G1mHkTJdLpWEZZ0lWZbOnDyjtuajoc+DF8EYwVqpZYbOEmZmZaqwdIJcLnewcKpg8YqsQzyQddFRGB2FEyckrzfRo0CqMg1D3nGesLZLZ5So6rzxOnT0ZLA4alg9xdBzv5jGZblVMcnLLfKIi+rqyDbDdNk8s0hhPh2RdRgNwzDkzgj/czMvP1fZOVnq7OgKvlHsOfHX+ze4JcnlMuXJ8jjuD3OMDbIO/ZF1GI2oWTc+U9m549TV0RUsjBqSeibh7b0GxuVyKTMrk6xDXJB19lEYHYV9+6Tzzkv0KJBuCvI8KsjzDN0RiIOcnCiNhkuyEaCynBWgTkHWIR7cGe6IN5HAWCHr0B9Zh3gg65BIZJ19/CsFAIT4fJFthmHKMIa+ncdOHwAAEo2sAwCkO7LOPgqjAICQo0cj22zfcuGwM4sAgNRE1gEA0h1ZZx+FUQDA4Azj3MP/huoHAEAqIusAAOmOrIuKwugoZGQkegQAEH+GacqwMTOmYTnrlgunIOsAOAFZ52xkHQAnIOuiozA6CjNnJnoEADAGXKbksnM7hbMC1CnIOgCOQNY5GlkHwBHIuqgojAIAQiZOjGwzDEOGjdsp7PQBACDRyDoAQLoj6+xzVhk4xnbuTPQIACC2zjsvSqNp2l+Qdsg6AOmGrEN/ZB2AdEPW2eesvY2xrq5EjwAAYuvkySiNLpcMG4u92zKQasg6AOmGrEN/ZB2AdJNMWRcIBPStb31L06ZNU1VVlX7+858P2Hfv3r2aP3++qqurNXfuXO2McuZqzZo1MgxDv/3tb2MyPgqjAICQxsYojb2zF9pZAABIcmQdACDdJVPWrV27Vrt27dKePXv09ttv6yc/+UnUgqckrVixQvX19dqzZ49Wrlypurq6sPUHDhzQE088oc9//vMxGx+FUQDA4Aybt1sYRAoAIEWRdQCAdJegrFu/fr2WL18ul8ulwsJCLVmyROvWrYvo19raqi1btmjp0qWSpMWLF8vn86mxp8obCAS0bNky/exnP5PH44nZ+Jh8CQAwKMNlynANHY6GxZtFAEBqIusAAOluuFnX3t4e1u7xeEZUkGxqatKUKVNCn0+dOlVvvfVWRD+fz6fS0lK53cFSpWEYqqioUFNTk6qqqvTTn/5UV1xxhS655JJhj2EwFEZHYdq0RI8AAMaA3dspuL0wLZF1AByBrHM0sg6AIwwz68rLy8Oa77//fj3wwAMR3efNm6e9e/dGfalt27YNe5jRfPDBB9qwYYNef/31mLxeXxRGRyEvL9EjAIDYckdLBbszEzps9kKnIOsApBuyDv2RdQDSTSyyzufzyev1hpoHulp006ZNg75cRUWFDh48qHnz5kkKPie0oqIiol95ebkOHz6s7u5uud1uWZalpqYmVVRU6OWXX9aBAwc0ffp0SVJzc7Pq6+t1+PBh3X777UPv0yBI9lE4dCjRIwCA2LrwwiiNxjAWpB2yDkC6IevQH1kHIN3EIuu8Xm/YMtLnet5www164okn5Pf71dbWpvXr12vJkiUR/YqLizVnzhytXbtWkrRhwwaVlZWpqqpKt99+uw4fPqwDBw7owIED+vznP69f/OIXoy6KShRGR6W1NdEjAIAx4DLtL0g7ZB0ARyDrHI2sA+AICcq6m2++WTNmzND06dM1d+5c3XXXXZo1a5YkaePGjVq2bFmob0NDgxoaGlRdXa2HHnpIa9asielYouFWegBAyIcfRrYZpiHDxi0XhsllNACA5EfWAQDSXTJlncvl0mOPPRZ13aJFi7Ro0aLQ5zU1NUPemi9Jf/rTn2I1PK4YBQCc09ERpdE07C/D8Pd///eaOnWqDMPQ9u3bQ+179+7V/PnzVV1drblz52rnzp2jXgcAQK+xzDoAABKBrLOPwigAYHBxCtC//du/1RtvvKEpU6aEta9YsUL19fXas2ePVq5cqbq6ulGvAwBgULxZBACkO7IuKgqjo1BYmOgRAMAYMMxzMxgOthjDi5Qrr7xSZWVlYW2tra3asmWLli5dKklavHixfD6fGhsbR7wOo0PWAXCEOGUdUgNZB8ARyLqoeMboKFRUJHoEADAGTNk7jdbTp729PazZ4/HYnsHQ5/OptLRUbncwngzDUEVFhZqampSfnz+idVVVVba+NqIj6wA4wjCzDumFrAPgCGRdVA7b3dg6cybRIwCA2KqsjNJo56xi7yKpvLxc+fn5oWX16tVjuxOIKbIOQLqJRdYhvZB1ANINWWcfV4yOwu7d0qRJiR4FAMSO1xul0e5zZnr6+Hw+efu8kN2rRaVgUfXw4cPq7u6W2+2WZVlqampSRUWFvF7viNZhdMg6AOkmFlmH9ELWAUg3ZJ19zioDAwAG1dwcpXGYD+n2er1hy3AKo8XFxZozZ47Wrl0rSdqwYYPKyspUVVU14nUAAPQVi6wDACCZkXX2URgFAISMZYCuWLFCZWVl+vjjj7Vw4cJQEbOhoUENDQ2qrq7WQw89pDVr1oS2Gek6AAB6jfWbxb1792r+/Pmqrq7W3LlztXPnzog+r776qi677DJ97nOf08yZM3X33XcrEAiMYO8AAKAwOhwpXRhta2vTTTfdJK/Xq4KCAt122206efLkoNtcffXVMgwjbPnGN74xRiMGgBRkDGMZhoaGBn388cfq7u5WS0tLaAb5mpoabdq0SXv27NGWLVs0a9as0DYjXZfKyDoAGANxyjopeCKwvr5ee/bs0cqVK1VXVxfRZ/z48frNb36jXbt2aevWrXrzzTf19NNPj3RvUg5ZBwBjII5Zl8pS+hmjN910kw4fPqyXX35ZXV1d+vrXv676+nr9+te/HnS75cuX6wc/+EHo85ycnBF9fcNhPywAnMlwmTJcQ59HMwIpfa4taZF1ABB/8cq61tZWbdmyRf/1X/8lSVq8eLHuuOMONTY2hj3uZfbs2aGPs7KyVFtbqwMHDgzra6Uysg4A4o/3ddGlbGH0ww8/1EsvvaR33nlHl156qSTpZz/7mb70pS/p4Ycf1uTJkwfcNicnRyUlJaMew8UXj/olACD58ZDuhCHrAGCMDDPr2tvbw5o9Hk/UZ2r7fD6VlpbK7Q6+7TIMQxUVFWpqahrwOdjNzc169tln9cILLwxzJ1ITWQcAY4T3dVGlbBl406ZNKigoCIWnJC1YsECmaWrz5s2DbvvMM8+oqKhIF154oe69916dPn063sMFgJRQUBClkVsuEoasA4DYi0XWlZeXKz8/P7SsXr06JmNrb2/XV77yFd19991hv/vTGVkHALHH+zr7UvaK0ebmZhUXF4e1ud1uFRYWqjnqU2aDvva1r2nKlCmaPHmy3n//fa1cuVK7d+/Wc889N+A2HR0d6ujoCH3ee4Z4925p7txR7ggAJJGpU6M0mobkspGOfocl6Bgg6wAg9mKRdT6fT16vN9Qc7WpRKVhAPXz4sLq7u+V2u2VZlpqamlRRURHR98SJE7r22mt13XXX6a677rKzK2mBrAOA2ON9nX1JVxi955579E//9E+D9vnwww9H/Pr19fWhj2fNmqXS0lJdc8012rdvn6ZNmxZ1m9WrV+vBBx+MaD9zZsTDAICkdPZslEZuuYg5sg4AEicWWef1esMKowMpLi7WnDlztHbtWtXV1WnDhg0qKyuLuI3+5MmTuvbaa3Xttdfqe9/7np3dSHpkHQAkDu/r7Eu6wui3v/3tqDM19lVZWamSkhK1traGtXd3d6utrW1Yz5m5/PLLJUmNjY0DBui9994bdta2vb1d5eXltr8GAKSKjz6K0mgY9mYlYOYC28g6AEicsc66hoYG1dXVadWqVfJ6vVqzZo0kadmyZVq0aJEWLVqkf/7nf9bbb7+tU6dOha54vOGGG/Td73532F8vWZB1AJA4vK+zL+kKoxMnTtTEiROH7Ddv3jwdO3ZMW7du1SWXXCJJevXVVxUIBEKhaMf27dslSaWlpQP2Gehh6gDgCKbsPZE6ZZ9aPfbIOgBIMnHMupqaGm3atCmi/cknnwx9/N3vfjeli6DRkHUAkGR4XxdVyu7uBRdcoGuvvVbLly/X22+/rb/85S+64447dOONN4ZmLvzkk080Y8YMvf3225Kkffv26R//8R+1detWHThwQBs3btQtt9yiK6+8UhdddFEidwcAkpfLsL8gpsg6ABgjZF3CkHUAMEbIuqiS7orR4XjmmWd0xx136JprrpFpmlq8eLEeffTR0Pquri7t3r07NDthZmam/vjHP+qRRx7RqVOnVF5ersWLF4/4OT5TpsRkNwAgqRmGIcPG7RR2+mD4yDoAiD+yLrHIOgCIP7IuupQujBYWFurXv/71gOunTp0qy7JCn5eXl+u///u/Y/b1x4+P2UsBQPLilouEIusAYAyQdQlF1gHAGCDronLY7sZWv2eEA0DKq62N0mjo3IO6B13GeLAYE2QdgHRD1qE/sg5AuiHr7KMwOgqHDiV6BAAwBngWjaORdQAcgaxzNLIOgCOQdVGl9K30AIDY2rs3SqMhe6fRnJWfAIAURdYBANIdWWcfhVEAQMipU5FtPKQbAJBOyDoAQLoj6+yjMAoAGBwP6QYApDuyDgCQ7si6qCiMjoLXm+gRAMAYMI3gYqcf0g5ZB8ARyDpHI+sAOAJZFxWF0VGorEz0CAAg/gwzuNjph/RD1gFwArLO2cg6AE5A1kVHYXQUuroSPQIAiK2KiiiNnFl0NLIOQLoh69AfWQcg3ZB19jmsDhxbO3cmegQAEFuFhZFtvWcW7SxIP2QdgHRD1qE/sg5AuiHr7OOKUQBAyKefRmk0epahOOvEIgAgRZF1AIB0R9bZR2EUABDy8ceRbYZpyLBxO4WdPgAAJBpZBwBId2SdfRRGAQCD48wiACDdkXUAgHRH1kVFYRQAMCjOLAIA0h1ZBwBId2RddA57pGpszZqV6BEAQPwZpmS4bCwkSloi6wA4AVnnbGQdACdIVNYFAgF961vf0rRp01RVVaWf//znA/bdu3ev5s+fr+rqas2dO1c7+8yON3XqVNXU1Ki2tla1tbVav359TMbHFaOj4HIlegQAEFt5eVEaueXC0cg6AOmGrEN/ZB2AdJNMWbd27Vrt2rVLe/bs0fHjxzV79mx98Ytf1MyZMyP6rlixQvX19aqrq9Ozzz6ruro6vfPOO6H169evV21tbUzHxznPUdi3L9EjAIDYmjYtsq33lgs7C9IPWQcg3ZB16I+sA5Bukinr1q9fr+XLl8vlcqmwsFBLlizRunXrIvq1trZqy5YtWrp0qSRp8eLF8vl8amxsjOl4+qMwOgonTiR6BAAQW35/ZJth2l+Qfsg6AOmGrEN/ZB2AdBOLrGtvbw9bOjo6RjSWpqYmTZkyJfT51KlT1dTUFNHP5/OptLRUbnfw5nbDMFRRURHW95ZbbtGsWbN022236ciRIyMaT39EOwAgZMeOKI3GMBYAAJIcWQcASHexyLry8nLl5+eHltWrV0f9WvPmzVNRUVHUxefzxWyfXn/9db3//vt69913VVRUpFtvvTUmr8szRgEAg2L2QgBAuiPrAADpbrhZ5/P55PV6Q+0ejydq/02bNg36ehUVFTp48KDmzZsnSTpw4IAqKioi+pWXl+vw4cPq7u6W2+2WZVlqamoK9e39f0ZGhu68805VV1cPuS92cMUoAGBQpml/AQAgFZF1AIB0N9ys83q9YctAhdGh3HDDDXriiSfk9/vV1tam9evXa8mSJRH9iouLNWfOHK1du1aStGHDBpWVlamqqkqnTp3SsWPHQn3XrVun2bNnj2g8/XHF6CiUlSV6BAAwBpip19HIOgCOQNY5GlkHwBESlHU333yz3nnnHU2fPl2GYeiuu+7SrFmzJEkbN27Uxo0b9eSTT0qSGhoaVFdXp1WrVsnr9WrNmjWSpJaWFi1evFh+v1+WZamyslJPP/10TMZHYXQUiooSPQIAiD+7k00wIUV6IusAOAFZ52xkHQAnSFTWuVwuPfbYY1HXLVq0SIsWLQp9XlNTE/XW/MrKSm3bti22A+tBtI9CW1uiRwAAsTVzZmSbYRi2F6Qfsg5AuiHr0B9ZByDdkHX2URgdhaamRI8AAGIrIyNKo3Hu7OJgC7cXpieyDkC6IevQH1kHIN2QdfZxKz0AIOSvf41sszvZBBNSAABSAVkHAEh3ZJ19FEYBACHt7ZFthhFchuKwOy4AACmKrAMApDuyzj4KowCAQRmmIcMcOh3t9AEAIBmRdQCAdEfWRUdhdBTGjUv0CAAg/rjlwtnIOgBOQNY5G1kHwAnIuugojI7C9OmJHgEAxB+3XDgbWQfACcg6ZyPrADgBWRcdhVEAQMjkyZFtodkJh2CnDwAAiUbWAQDSHVlnn8N2N7a2b0/0CAAgtoqLI9tM07C9IP2QdQDSDVmH/sg6AOmGrLOPwigAIOSzzyLbem+5sLMM19SpU1VTU6Pa2lrV1tZq/fr1kqS9e/dq/vz5qq6u1ty5c7Vz587QNoOtAwBgKGOddQAAjDWyzj4KowCAkIMHI9t6H9JtZxmJ9evXa/v27dq+fbuWLFkiSVqxYoXq6+u1Z88erVy5UnV1daH+g60DAGAoY511dk7oHThwQFdffbXy8/NVW1s7/C8CAEAfiXhfl6octrsAgOEa6zOLra2t2rJli5YuXSpJWrx4sXw+nxobGwddBwDASMUz6+yc0PN6vfrhD3+oX//616PfGQAAouCK0egojAIABmUaNp9F05Og7e3tYUtHR8egr3/LLbdo1qxZuu2223TkyBH5fD6VlpbK7Q7OD2gYhioqKtTU1DToOgAARmq4WWeX3RN6hYWF+sIXvqBx48bFbJ8AAOgrXlmX6iiMjsKMGYkeAQDEn2FIpo2lNz/Ly8uVn58fWlavXj3ga7/++ut6//339e6776qoqEi33nrrGO0V7CLrADjBcLPO7klATuilBrIOgBMMN+ucwp3oAaSyrKxEjwAAYis7O7LN7u0UvX18Pp+8Xm+o3ePxDLhNRUWFJCkjI0N33nmnqqurVV5ersOHD6u7u1tut1uWZampqUkVFRXyer0DrkN8kHUA0k0ssq68vDys/f7779cDDzww+sEhIcg6AOkmFlnnFFwxOgoHDiR6BAAQWzU1kW0u07C9SMHnpPVdBiqMnjp1SseOHQt9vm7dOs2ePVvFxcWaM2eO1q5dK0nasGGDysrKVFVVNeg6xAdZByDdxCLrfD6fjh8/HlruvffeqF+r78k+SZzQS1JkHYB0E4uscwquGB2FPu/nASBt2Z2ZcLizF7a0tGjx4sXy+/2yLEuVlZV6+umnJUkNDQ2qq6vTqlWr5PV6tWbNmtB2g61D7JF1AJxguFnXe/JvKH1P6NXV1XFCL0mRdQCcIF7v61IdhVEAQMh770W2xeuWi8rKSm3bti3qupqaGm3atGnY6wAAGMpYZp008Am9ZcuWadGiRVq0aJFOnz6t6upqdXR06Pjx4yorK9PNN9886HO6AQAYyFhnXSqjMAoACLGsyLbe2QmHYqcPAACJNtZZN9AJvSeffDL0cU5Ojj7++ONhvzYAANHwvs4+CqMAgEG5zOBipx8AAKmIrAMApDuyLjoKo6NQUpLoEQBA/HHLhbORdQCcgKxzNrIOgBOQddFRGB0FAhSAE5iGIdNGOtrpg9RD1gFwArLO2cg6AE5A1kXnsAtkY6u9PdEjAIDYqqmJbDMN+wvSD1kHIN2QdeiPrAOQbsg6+yiMjsJf/5roEQBAbGVnR7YZpmTaWAwSJS2RdQDSDVmH/sg6AOmGrLOPW+kBACFNTZFtLtOQy8ZpQzt9AABINLIOAJDuyDr7KIwCAELa2iLbDNl8SHfMRwMAQOyRdQCAdEfW2UdhFAAwKJdhyGUjQe30AQAgGZF1AIB0R9ZFR2F0FDyeRI8AAOLPZQYXO/2Qfsg6AE5A1jkbWQfACci66CiMjsIFFyR6BAAQf4YhGTbOGjrsxKJjkHUAnICsczayDoATkHXRURgFAIQUF0e2cWYRAJBOyDoAQLoj6+xz2O7G1gcfJHoEABBbkydHtpk9z6IZajGddmrRIcg6AOmGrEN/ZB2AdEPW2UdhdBS6uxM9AgCIrRMnIttMw/6C9EPWAUg3ZB36I+sApJtkyrpAIKBvfetbmjZtmqqqqvTzn/98wL579+7V/PnzVV1drblz52rnzp2hdR0dHbrjjjs0ffp0zZo1S0uXLo3J+FK6MPqjH/1I8+fPV05OjgoKCmxtY1mWvv/976u0tFTZ2dlasGCB9u7dG9+BAkCK2Lcvss1lGrYXxB5ZBwCxRdYlH7IOAGIrmbJu7dq12rVrl/bs2aO3335bP/nJT8IKnn2tWLFC9fX12rNnj1auXKm6urrQunvuuUeGYWjPnj3asWOHHn744ZiML6ULo52dnbrhhht0++23297mxz/+sR599FE9/vjj2rx5s8aNG6eFCxfq7NmzcRwpAKQuwzBsL4g9sg4A4o+sSyyyDgDiL1FZt379ei1fvlwul0uFhYVasmSJ1q1bF9GvtbVVW7ZsCV0JunjxYvl8PjU2NurUqVP65S9/qR/96Eeh8ZWUlMRkfCk9+dKDDz4oSXrqqads9bcsS4888oi+973v6brrrpMkPf3005o0aZJ++9vf6sYbb4zXUAEgZfU+a8ZOP8QeWQcA8UfWJRZZBwDxN9ysa29vD2v3eDzyeDzD/rpNTU2aMmVK6POpU6fqrbfeiujn8/lUWloqtztYqjQMQxUVFWpqatLp06dVWFioVatW6Y9//KOys7P1wAMP6Jprrhn2ePpL6StGh2v//v1qbm7WggULQm35+fm6/PLLtWnTpmG/XlVVLEcHAMmpd/ZCOwsSj6wDgOEj61ILWQcAwzfcrCsvL1d+fn5oWb16ddTXnTdvnoqKiqIuPp8vJmPv7u7WwYMH9bnPfU5btmzRo48+qiVLlqilpWXUr53SV4wOV3NzsyRp0qRJYe2TJk0KrYumo6NDHR0doc97q+a5uXEYJAAkUEZGZJtpc2ZCp81emKzIOgAYHFmX+sg6ABhcLLLO5/PJ6/WG2ge6WnSoE1IVFRU6ePCg5s2bJ0k6cOCAKioqIvqVl5fr8OHD6u7ultvtlmVZampqUkVFhQoKCmSapm666SZJ0uzZs3X++edrx44dEVkwXEl3zrP3YaqDLR999NGYjmn16tVhVfLy8nJJ0iefjOkwACDuZs6MbOu95cLOAnvIOgBIHLJubJB1AJA4scg6r9cbtozkNnpJuuGGG/TEE0/I7/erra1N69ev15IlSyL6FRcXa86cOVq7dq0kacOGDSorK1NVVZWKiop0zTXX6A9/+IOk4J0D+/fv1wUXXDCiMfWVdFeMfvvb3w6bdSqaysrKEb1274NZW1paVFpaGmpvaWlRbW3tgNvde++9uuuuu0Kft7e3q7y8XEeOSDH4HgBAUjMNezMTchWNfWQdACQXsi72yDoASC6Jyrqbb75Z77zzjqZPny7DMHTXXXdp1qxZkqSNGzdq48aNevLJJyVJDQ0Nqqur06pVq+T1erVmzZrQ6zz++OO67bbbtHLlSpmmqYaGBp133nmjHl/SFUYnTpyoiRMnxuW1zz//fJWUlOiVV14JBWZ7e7s2b9486AyII33ALACkmp07I9uMnmUovFW0j6wDgMQh68YGWQcAiZNMWedyufTYY49FXbdo0SItWrQo9HlNTc2At+ZXVlbqtddei/HokvBW+uFoamrS9u3b1dTUJL/fr+3bt2v79u06efJkqM+MGTP0/PPPSwrOaHXnnXfqhz/8oTZu3KgdO3bolltu0eTJk3X99dcnaC8AIHl0dUW2uUzD9oLYI+sAILbIuuRD1gFAbJF19iXdFaPD8f3vf1//9m//Fvp89uzZkqTXXntNV199tSRp9+7dOn78eKjP3XffrVOnTqm+vl7Hjh3TF77wBb300kvKysoa07EDQKpwGaZcxtDn0ez0wfCRdQAQf2RdYpF1ABB/ZF10hmVZVqIHkWra29uVn5+vDz44rpkzvUNvAAAp4vXX23XVVfmhNx75+fl68b83aZyN6VpPnTypL101T8ePHw+bvRCpiawDkK7IOvQi6wCkK7LOvpS+YjTReiYxBIC0ZncWXmbqTU9kHQAnIOucjawD4ARkXXTOuj42xk6fTvQIACC2pk2LbDMMw/aC9EPWAUg3ZB36I+sApBuyzj4Ko6OwZ0+iRwAAsZWXF9nWe2bRzoL0Q9YBSDdkHfoj6wCkG7LOPm6lBwCEHDoU2WbanJnQdNjshQCA1ETWAQDSHVlnH4VRAEBIa2tkm9Hz31Ds9AEAINHIOgBAuiPr7KMwCgAYlGkYMm3cTmGnDwAAyYisAwCkO7IuOgqjo2DyhFYADuCyecuFnT5IPWQdACcg65yNrAPgBGRddBRGR+GiixI9AgCIP0P2bqdwVnw6B1kHwAnIOmcj6wA4AVkXHYVRAEBIYWFkG7dcAADSCVkHAEh3ZJ193DQwCh99lOgRAEBsVVREtvUGqJ0F6YesA5BuyDr0R9YBSDdknX1cMToKZ88megQAEFtnzkS2GbJ3O4Wz4tM5yDoA6YasQ39kHYB0Q9bZxxWjAICQ3bsj2zizCABIJ2OddXv37tX8+fNVXV2tuXPnaufOnVH7/fKXv9T06dM1bdo0LV++XF1dXcP+WgAASLyvGw4KowCAQRnD+A8AgFQUz6xbsWKF6uvrtWfPHq1cuVJ1dXURffbv36/77rtPf/7zn9XY2KiWlhb94he/iMGeAQAQxPu66CiMAgAGZRiSaWNx2IlFAEAaiVfWtba2asuWLVq6dKkkafHixfL5fGpsbAzr9+yzz2rRokUqKSmRYRj6xje+oXXr1sVq9wAA4H3dAHjG6ChMnZroEQBA/Nk9a+i0M4tOQdYBcILhZl17e3tYu8fjkcfjiejv8/lUWloqtzv4tsswDFVUVKipqUlVVVWhfk1NTZoyZUro86lTp6qpqWlE+4LhI+sAOAHv66LjitFRKChI9AgAILainR3klgtnI+sApJtYZF15ebny8/NDy+rVq8d4LxBLZB2AdMP7Ovu4YnQUWlokrzfRowCA2Ln44si2eM5euHfvXt1666369NNPlZ+fr6eeekozZ84cwSshXsg6AOkmFlnn8/nk7fPLMdrVolKwgHr48GF1d3fL7XbLsiw1NTWpoqIirF9FRYX27dsX+vzAgQMRfRA/ZB2AdDPW7+tSGVeMjsLhw4keAQDEX6InpEBikXUAnGC4Wef1esOWgQqjxcXFmjNnjtauXStJ2rBhg8rKysJuo5eCzx7duHGjmpubZVmWHn/8cd14443x3WmEkHUAnIArRqOjMAoACNm9O7LNGMYyHHYnpAAAIJbGMuskqaGhQQ0NDaqurtZDDz2kNWvWSJKWLVumjRs3SpIqKyv14IMP6oorrlBVVZUmTpyoFStWjOCrAQAw9lmXyriVfgQsy5IkvfVW+EPXCwqCD+4+e1b66KPI7Wprg//fu1c6dSp8XUWFVFgoffqp9PHH4evy8qRp0yS/X9qxI/J1Z86UMjKkv/5V6vcceE2eLBUXS599Jh08GL4uO1uqqQl+/N57Us9uhdTUBPs0NUltbeHriouDr33ihNTnrh9JwbH03gm7c6fU1RW+ftq04D4dOiS1toavKywMHoszZyL/IRvGucvBd+8O9ulryhRp/Pjgax46FL7O65UqK4Nj2blTEWbNklyu4L6cOBG+rqxMKioKHoP+z8AfN06aPj348fbtka87Y4aUlSUdOCAdOxa+rqQkuLS3B793fXk80gUXBD/+4AOpuzt8fVWVlJsrffKJdORI+LoJE6Tycun0aWnPnvB1pilddFHw448+Cv6s9jV1avDnuKUl8sx5fr50/vlSZ6e0a1fkvl50UfD1GxulkyfD15WXB8d19Kjk84Wvy80N7k8gIL3/fuTrfu5zUmamtH+/dPx4+LrSUmnSpOCxPXAgfF1WVvD4S8HXDQTC11dXSzk5wfEcPRq+buJE6bzzgvvRv0bndksXXhj8+MMPpY6O8PWVlcGft+bm4NJXKvyO2L492MGyLBk9D6Y5dfKkrXA81fONj/WEFEgMso6s60XWnUPWBZF1w1NTU6NNmzZFtD/55JNhny9fvlzLly8f9utj5Mg6sq4XWXcOWRdE1jkHhdERONHzG3blyvIEjwQA4uPEiRMqKipSSUmJLr/qctvb5ebmqrw8/Hfj/fffrwceeCDGI0S8kXUA0t1Is66kpESZmZlxHBnGClkHIN2RdUMzLKv/+SQMJRAI6NChQ8rLywtV3uOhvb1d5eXlEQ93dxKOAcdA4hhIY3cMLMvSiRMnNHnyZJmmqbNnz6qzs3NY2/f/vTjQFaOtra2qqqpSW1tbaEKK0tJSvfHGG1wxmgTIurHDMeAYSBwDKXWyLjMzU1lZWXEbH8YOWTd2OAYcA4ljIJF1yYgrRkfANE2VlZWN2dfrfai7k3EMOAYSx0Aam2OQn58f+jgrKytugdh3Qoq6uroBJ6RAYpB1Y49jwDGQOAZSemUdkhtZN/Y4BhwDiWMgkXXJhMIoACBhGhoaVFdXp1WrVsnr9YYmpAAAAAAAIN4ojAIAEmagCSkAAAAAAIg3M9EDwMA8Ho/uv//+qM/mcwqOAcdA4hhIHAOkL362OQYSx0DiGEgcA6QvfrY5BhLHQOIYSByDZMTkSwAAAAAAAAAchytGAQAAAAAAADgOhVEAAAAAAAAAjkNhFAAAAAAAAIDjUBgFAAAAAAAA4DgURpPMj370I82fP185OTkqKCiwtY1lWfr+97+v0tJSZWdna8GCBdq7d298BxpHbW1tuummm+T1elVQUKDbbrtNJ0+eHHSbq6++WoZhhC3f+MY3xmjEo/fYY49p6tSpysrK0uWXX66333570P7/8R//oRkzZigrK0uzZs3Siy++OEYjjZ/hHIOnnnoq4vudlZU1hqONrddff11f+cpXNHnyZBmGod/+9rdDbvOnP/1Jc+bMkcfjUVVVlZ566qm4jxOIFbKOrCPryDqyDumOrCPryDqyjqxLDRRGk0xnZ6duuOEG3X777ba3+fGPf6xHH31Ujz/+uDZv3qxx48Zp4cKFOnv2bBxHGj833XSTdu7cqZdfflkvvPCCXn/9ddXX1w+53fLly3X48OHQ8uMf/3gMRjt669ev11133aX7779f7777ri6++GItXLhQra2tUfu/+eab+upXv6rbbrtN27Zt0/XXX6/rr79eH3zwwRiPPHaGewwkyev1hn2/Dx48OIYjjq1Tp07p4osv1mOPPWar//79+/XlL39ZX/ziF7V9+3bdeeedWrZsmf7whz/EeaRAbJB1ZB1ZR9YNhaxDqiPryDqyjqwbClmXJCwkpTVr1lj5+flD9gsEAlZJSYn1k5/8JNR27Ngxy+PxWOvWrYvjCONj165dliTrnXfeCbX9/ve/twzDsD755JMBt7vqqqusf/iHfxiDEcbeZZddZn3zm98Mfe73+63Jkydbq1evjtr/7/7u76wvf/nLYW2XX365tWLFiriOM56Gewzs/vtIRZKs559/ftA+d999tzVz5sywtiVLllgLFy6M48iA2CPryDqyjqwbCFmHdEHWkXVkHVk3ELIuOXDFaIrbv3+/mpubtWDBglBbfn6+Lr/8cm3atCmBIxuZTZs2qaCgQJdeemmobcGCBTJNU5s3bx5022eeeUZFRUW68MILde+99+r06dPxHu6odXZ2auvWrWHfP9M0tWDBggG/f5s2bQrrL0kLFy5Mye+3NLJjIEknT57UlClTVF5eruuuu047d+4ci+EmhXT7GQCGQtadQ9al3vdbIutGIt1+BoChkHXnkHWp9/2WyLqRSLefgVTlTvQAMDrNzc2SpEmTJoW1T5o0KbQulTQ3N6u4uDisze12q7CwcND9+drXvqYpU6Zo8uTJev/997Vy5Urt3r1bzz33XLyHPCqffvqp/H5/1O/fRx99FHWb5ubmtPl+SyM7BjU1NfrXf/1XXXTRRTp+/LgefvhhzZ8/Xzt37lRZWdlYDDuhBvoZaG9v15kzZ5SdnZ2gkQHxQdYFkXWp+f2WyLqRIOvgNGRdEFmXmt9viawbCbIuOXDF6Bi45557Ih4o3H8Z6BdFuoj3Maivr9fChQs1a9Ys3XTTTXr66af1/PPPa9++fTHcCySLefPm6ZZbblFtba2uuuoqPffcc5o4caIaGhoSPTTAscg6sg6xRdYByYesI+sQW2QdkgFXjI6Bb3/726qrqxu0T2Vl5Yheu6SkRJLU0tKi0tLSUHtLS4tqa2tH9JrxYPcYlJSURDyYubu7W21tbaF9tePyyy+XJDU2NmratGnDHu9YKSoqksvlUktLS1h7S0vLgPtbUlIyrP7JbiTHoL+MjAzNnj1bjY2N8Rhi0hnoZ8Dr9XJWEQlD1pF1AyHryLqRIOuQjMg6sm4gZB1ZNxJkXXKgMDoGJk6cqIkTJ8bltc8//3yVlJTolVdeCQVme3u7Nm/ePKwZEOPN7jGYN2+ejh07pq1bt+qSSy6RJL366qsKBAKhULRj+/btkhT2R0UyyszM1CWXXKJXXnlF119/vSQpEAjolVde0R133BF1m3nz5umVV17RnXfeGWp7+eWXNW/evDEYceyN5Bj05/f7tWPHDn3pS1+K40iTx7x58/Tiiy+GtaXyzwDSA1lH1g2ErCPrRoKsQzIi68i6gZB1ZN1IkHVJItGzPyHcwYMHrW3btlkPPviglZuba23bts3atm2bdeLEiVCfmpoa67nnngt9/tBDD1kFBQXW7373O+v999+3rrvuOuv888+3zpw5k4hdGLVrr73Wmj17trV582brjTfesKZPn2599atfDa3/+OOPrZqaGmvz5s2WZVlWY2Oj9YMf/MDasmWLtX//fut3v/udVVlZaV155ZWJ2oVh+c1vfmN5PB7rqaeesnbt2mXV19dbBQUFVnNzs2VZlnXzzTdb99xzT6j/X/7yF8vtdlsPP/yw9eGHH1r333+/lZGRYe3YsSNRuzBqwz0GDz74oPWHP/zB2rdvn7V161brxhtvtLKysqydO3cmahdG5cSJE6F/65Ksn/70p9a2bdusgwcPWpZlWffcc4918803h/r/9a9/tXJycqzvfOc71ocffmg99thjlsvlsl566aVE7QIwLGQdWUfWkXVkHdIdWUfWkXVkHVmXGiiMJplbb73VkhSxvPbaa6E+kqw1a9aEPg8EAtZ9991nTZo0yfJ4PNY111xj7d69e+wHHyNHjx61vvrVr1q5ubmW1+u1vv71r4f9AbF///6wY9LU1GRdeeWVVmFhoeXxeKyqqirrO9/5jnX8+PEE7cHw/exnP7MqKiqszMxM67LLLrPeeuut0LqrrrrKuvXWW8P6//u//7tVXV1tZWZmWjNnzrT+8z//c4xHHHvDOQZ33nlnqO+kSZOsL33pS9a7776bgFHHxmuvvRb1333vPt96663WVVddFbFNbW2tlZmZaVVWVob9TgCSHVlH1pF1ZB1Zh3RH1pF1ZB1ZR9alBsOyLCuOF6QCAAAAAAAAQNJhVnoAAAAAAAAAjkNhFAAAAAAAAIDjUBgFAAAAAAAA4DgURgEAAAAAAAA4DoVRAAAAAAAAAI5DYRQAAAAAAACA41AYBQAAAAAAAOA4FEYBAAAAAAAAOA6FUQAAAAAAAACOQ2EUAAAAAAAAgONQGAWS0JEjR1RSUqJVq1aF2t58801lZmbqlVdeSeDIAACIDbIOAJDuyDog+RmWZVmJHgSASC+++KKuv/56vfnmm6qpqVFtba2uu+46/fSnP0300AAAiAmyDgCQ7sg6ILlRGAWS2De/+U398Y9/1KWXXqodO3bonXfekcfjSfSwAACIGbIOAJDuyDogeVEYBZLYmTNndOGFF8rn82nr1q2aNWtWoocEAEBMkXUAgHRH1gHJi2eMAkls3759OnTokAKBgA4cOJDo4QAAEHNkHQAg3ZF1QPLiilEgSXV2duqyyy5TbW2tampq9Mgjj2jHjh0qLi5O9NAAAIgJsg4AkO7IOiC5URgFktR3vvMdPfvss3rvvfeUm5urq666Svn5+XrhhRcSPTQAAGKCrAMApDuyDkhu3EoPJKE//elPeuSRR/SrX/1KXq9XpmnqV7/6lf785z/rX/7lXxI9PAAARo2sAwCkO7IOSH5cMQoAAAAAAADAcbhiFAAAAAAAAIDjUBgFAAAAAAAA4DgURgEAAAAAAAA4DoVRAAAAAAAAAI5DYRQAAAAAAACA41AYBQAAAAAAAOA4FEYBAAAAAAAAOA6FUQAAAAAAAACOQ2EUAAAAAAAAgONQGAUAAAAAAADgOBRGAQAAAAAAADgOhVEAAAAAAAAAjkNhFAAAAAAAAIDjUBgFAAAAAAAA4DgURgEAAAAAAAA4DoVRAAAAAAAAAI5DYRQAAAAAAACA41AYBQAAAAAAAOA4FEYBAAAAAAAAOA6FUQAAAAAAAACOQ2EUAAAAAAAAgONQGAUAAAAAAADgOBRGAQAAAAAAADgOhVEAAAAAAAAAjkNhFAAAAAAAAIDjUBgFAAAAAAAA4DgURgEAAAAAAAA4DoVRAAAAAAAAAI5DYRQAAAAAAACA41AYBQAAAAAAAOA4FEYBAAAAAAAAOA6FUQAAAAAAAACOQ2EUAAAAAAAAgONQGAUAAAAAAADgOBRGAQAAAAAAADgOhVEAAAAAAAAAjkNhFAAAAAAAAIDjUBgFAAAAAAAA4DgURgEAAAAAAAA4DoVRAAAAAAAAAI5DYRQAAAAAAACA41AYBQAAAAAAAOA4FEYBAAAAAAAAOA6FUQAAAAAAAACOQ2EUAAAAAAAAgONQGAUAAAAAAADgOBRGAQAAAAAAADgOhVEAAAAAAAAAjkNhFAAAAAAAAIDjUBgFAAAAAAAA4DgURgEAAAAAAAA4DoVRAAAAAAAAAI5DYRQAAAAAAACA4/w/Axbx3HQmPXcAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "datasetPath = 'dataset/train'\n", "\n", "train_ds = datasetLoader(processFolder(hyperParameterDict, datasetPath))\n", "\n", "plotState = getPreparePlotFunction(train_ds.fileFormat)(train_ds, hyperParameterDict)\n", "updateFn = getUpdatePlotFunction(train_ds.fileFormat)\n", "\n", "dropdown = widgets.Dropdown(options=train_ds.fileNames, description='File:', layout={'width': 'initial'})\n", "slider = widgets.IntSlider(min=0, max=getFileCount(train_ds.fileNames[0]), value=0, description='Slider:')\n", "\n", "def on_change(change):\n", " if change['type'] == 'change' and change['name'] == 'value':\n", " slider.max = getFileCount(change['new'])\n", " if slider.value > slider.max:\n", " slider.value = 0\n", " # print(change['new'], slider.value)\n", " updateFn(plotState, train_ds, hyperParameterDict, [change['new'], slider.value, None, None, None])\n", "\n", "def on_change_slider(change):\n", " if change['type'] == 'change' and change['name'] == 'value': \n", " # print(change['new'])\n", " updateFn(plotState, train_ds, hyperParameterDict, [dropdown.value, change['new'], None, None, None])\n", "\n", "dropdown.observe(on_change)\n", "slider.observe(on_change_slider)\n", "\n", "display(dropdown)\n", "display(slider)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3240034d3f444363a2a65c40a68471f9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1024 [00:00\n", "
\n", " Figure\n", "
\n", " \n", " \n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "basisTerms = database['basisTerms'].unique()\n", "basisFunctions = database['basisFunctions'].unique()\n", "\n", "hues = sns.color_palette(n_colors = len(basisFunctions))\n", "linestyles = ['--', '-', ':', '-.']\n", "\n", "fig, axis = plt.subplots(1,2, figsize = (10,4), sharey = False, squeeze= False)\n", "\n", "for i, basisFunction in enumerate(basisFunctions):\n", " for j, basisTerm in enumerate(basisTerms):\n", " subDatabase = database[(database['basisFunctions'] == basisFunction) & (database['basisTerms'] == basisTerm)]\n", " # subDatabase = subDatabase[subDatabase['dimension'] == 3]\n", "\n", " iters = subDatabase['iteration']\n", " losses = subDatabase['losses']\n", " psnrs = subDatabase['psnrs']\n", "\n", " losses = gaussian_filter1d(losses, sigma = 5)\n", " psnrs = gaussian_filter1d(psnrs, sigma = 5)\n", "\n", " axis[0,0].plot(iters, losses, label = f'{basisFunction} - {basisTerm}', color = hues[i], ls = linestyles[j % len(linestyles)])\n", " axis[0,1].plot(iters, psnrs, label = f'{basisFunction} - {basisTerm}', color = hues[i], ls = linestyles[j % len(linestyles)])\n", "\n", "axis[0,0].set_yscale('log')\n", "axis[0,0].set_xlabel('Iteration')\n", "axis[0,0].set_ylabel('Loss')\n", "# axis[0,0].legend(ncol = 2)\n", "\n", "axis[0,1].set_xlabel('Iteration')\n", "axis[0,1].set_ylabel('PSNR')\n", "\n", "handles, labels = axis[0,0].get_legend_handles_labels()\n", "fig.legend(handles, labels, loc='upper center', ncol = 5,bbox_to_anchor=(0.5, 0.95))\n", "\n", "fig.suptitle('Training process')\n", "fig.subplots_adjust(top = 0.725)\n", "# fig.bbox_inches = 'tight'\n", "\n", "# fig.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "torch_sfbc", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }