File size: 7,337 Bytes
4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 34255bf 7784faa 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 4c11fe6 40e2738 c16b5fa 40e2738 c16b5fa 4c11fe6 40e2738 4c11fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: apache-2.0
language:
- en
pretty_name: Tiny QA Benchmark (Original EN Core for TQB++)
size_categories:
- n<1K
tags:
- question-answering
- evaluation
- benchmark
- toy-dataset
- tqb++-core
task_categories:
- question-answering
task_ids:
- extractive-qa
- closed-book-qa
arxiv: 2505.12058
datasets:
- vincentkoc/tiny_qa_benchmark_pp
---
# Tiny QA Benchmark (Original English Core for TQB++)
**This dataset (`vincentkoc/tiny_qa_benchmark`) is the original 52-item English Question-Answering set. It now serves as the immutable "gold standard" core for the expanded [Tiny QA Benchmark++ (TQB++)](https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark_pp) project.**
The TQB++ project builds upon this core dataset by introducing a powerful synthetic generation toolkit, pre-built multilingual datasets, and a comprehensive framework for rapid LLM smoke testing.
**For the full TQB++ toolkit, the latest research paper, multilingual datasets, and the synthetic generator, please visit:**
* **TQB++ Hugging Face Dataset Collection & Toolkit:** [vincentkoc/tiny_qa_benchmark_pp](https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark_pp)
* **TQB++ GitHub Repository (Code, Paper & Toolkit):** [vincentkoc/tiny_qa_benchmark_pp](https://github.com/vincentkoc/tiny_qa_benchmark_pp)
This original dataset (`vincentkoc/tiny_qa_benchmark`) contains 52 hand-crafted general-knowledge QA pairs covering geography, history, math, science, literature, and more. It remains ideal for quick sanity checks, pipeline smoke-tests, and as a foundational component of TQB++. Each example includes:
- **text**: the question prompt
- **label**: the “gold” answer
- **metadata.context**: a one-sentence fact
- **tags**: additional annotations (`category`, `difficulty`)
It’s intentionally tiny (<100 KB) so you can iterate on data loading, evaluation scripts, or CI steps in under a second using these specific 52 items.
## Supported Tasks and Formats (for this core dataset)
- **Tasks**:
- Extractive QA
- Generative QA
- **Format**: JSON
- **Splits**:
- `train` (all 52 examples)
## Languages (for this core dataset)
- English (`en`)
## Dataset Structure
### Data Fields
Each example in `data/train.json` (as loaded by `datasets`) has:
| field | type | description |
|---------------------|--------|----------------------------------------------|
| `text` | string | The question prompt. |
| `label` | string | The correct answer. |
| `metadata` | object | Additional info. |
| `metadata.context` | string | A one-sentence fact supporting the answer. |
| `tags.category` | string | Broad question category (e.g. `geography`). |
| `tags.difficulty` | string | Rough difficulty level (e.g. `easy`). |
## Data Example
```json
[
{
"text": "What is the capital of France?",
"label": "Paris",
"metadata": {
"context": "France is a country in Europe. Its capital is Paris."
},
"tags": {
"category": "geography",
"difficulty": "easy"
}
},
{
"text": "What is 2 + 2?",
"label": "4",
"metadata": {
"context": "Basic arithmetic: 2 + 2 equals 4."
},
"tags": {
"category": "math",
"difficulty": "easy"
}
}
]
```
*(Note: The actual file on the Hub might be a `.jsonl` file where each line is a JSON object, but `load_dataset` handles this.)*
## Data Splits
Only one split for this core dataset:
- **train**: 52 examples, used for development, quick evaluation, and as the TQB++ core.
## Data Creation
### Curation Rationale
The "Tiny QA Benchmark" (this 52-item set) was originally created to:
1. Smoke-test QA pipelines (loading, preprocessing, evaluation).
2. Demo Hugging Face Datasets integration in tutorials.
3. Verify model–eval loops run without downloading large corpora.
4. **Serve as the immutable "gold standard" English core for the [Tiny QA Benchmark++ (TQB++)](https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark_pp) project.**
### Source Data
Hand-crafted by the dataset creator from well-known, public-domain facts.
It was initially developed as a dataset for sample projects to demonstrate [Opik](https://github.com/comet-ml/opik/) and now forms the foundational English core of TQB++.
### Annotations
Self-annotated. Each `metadata.context` and `tags` field is manually created for these 52 items.
## Usage
Load this specific 52-item core dataset with:
```python
from datasets import load_dataset
ds = load_dataset("vincentkoc/tiny_qa_benchmark")
print(ds["train"][0])
# Expected output:
# {
# "text": "What is the capital of France?",
# "label": "Paris",
# "metadata": {
# "context": "France is a country in Europe. Its capital is Paris."
# },
# "tags": {
# "category": "geography",
# "difficulty": "easy"
# }
# }
```
For accessing the full TQB++ suite, including multilingual packs and the synthetic generator, refer to the [TQB++ Hugging Face Dataset Collection](https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark_pp).
## Considerations for Use
* **Immutable Core for TQB++:** This dataset is the stable, hand-curated English core of the TQB++ project. Its 52 items are not intended to change.
* **Not a Comprehensive Benchmark (on its own):** While excellent for quick checks, these 52 items are too few for statistically significant model ranking. For broader evaluation, use in conjunction with the TQB++ synthetic generator and its multilingual capabilities found at [vincentkoc/tiny_qa_benchmark_pp](https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark_pp).
* **Do Not Train:** Primarily intended for evaluation, smoke-tests, or demos.
* **No Sensitive Data:** All facts are public domain.
## Licensing
Apache-2.0. See the `LICENSE` file in the [TQB++ GitHub repository](https://github.com/vincentkoc/tiny_qa_benchmark_pp) for details (as this dataset is now part of that larger project).
## Citation
If you use this specific 52-item core English dataset, please cite it. You can use the following BibTeX entry, which has been updated to reflect its role:
```bibtex
@misc{koctinyqabenchmark_original_core,
author = { Vincent Koc },
title = { Tiny QA Benchmark (Original 52-item English Core for TQB++) },
year = 2025,
url = { https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark },
doi = { 10.57967/hf/5417 },
publisher = { Hugging Face }
}
```
For the complete **Tiny QA Benchmark++ (TQB++)** project (which includes this core set, the synthetic generator, multilingual packs, and the associated research paper), please refer to and cite the TQB++ project directly:
```bibtex
@misc{koctinyqabenchmark_pp_dataset,
author = {Vincent Koc},
title = {Tiny QA Benchmark++ (TQB++) Datasets and Toolkit},
year = {2025},
publisher = {Hugging Face & GitHub},
doi = {10.57967/hf/5531}, /* DOI for the TQB++ collection */
howpublished = {\\url{https://huggingface.co/datasets/vincentkoc/tiny_qa_benchmark_pp}},
note = {See also: \\url{https://github.com/vincentkoc/tiny_qa_benchmark_pp}}
}
``` |