Upload ./convert_gt.py with huggingface_hub
Browse files- convert_gt.py +445 -0
convert_gt.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import os
|
| 3 |
+
from utils import load_json, write_json, dir_of_this_file, load_csv
|
| 4 |
+
import torch
|
| 5 |
+
# import numpy as np
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
sn_2_imgdir = {
|
| 10 |
+
e[0]: Path("/your_path/colmap_results/data/") / e[1]
|
| 11 |
+
for e in load_csv(dir_of_this_file(__file__) / "seed_db.csv")
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
SAVE_ROOT = dir_of_this_file(__file__) / "gt_cams"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def write_cams(sn, all_cams):
|
| 19 |
+
output_fn = SAVE_ROOT / f"{sn}.json"
|
| 20 |
+
write_json(output_fn, all_cams)
|
| 21 |
+
print(sn, end=',')
|
| 22 |
+
print(output_fn)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def list_scene_fnames(sn):
|
| 26 |
+
return list(sorted(os.listdir(sn_2_imgdir[sn])))
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def break_scenes(raw):
|
| 30 |
+
raw = raw.strip().split('\n')
|
| 31 |
+
return [e.strip() for e in raw]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def strip_sn_prefix(sn_name):
|
| 35 |
+
parts = sn_name.split("_")[1:]
|
| 36 |
+
return "_".join(parts)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def invert_trans(trans_T):
|
| 40 |
+
assert trans_T.shape == (4, 4)
|
| 41 |
+
R = trans_T[0:3, 0:3]
|
| 42 |
+
t = trans_T[0:3, 3:4]
|
| 43 |
+
new_T = torch.eye(4, dtype=trans_T.dtype, device=trans_T.device)
|
| 44 |
+
new_T[0:3, 0:3] = R.T
|
| 45 |
+
new_T[0:3, 3:4] = -R.T @ t
|
| 46 |
+
return new_T
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def hike():
|
| 50 |
+
''' # these are problematic scenes
|
| 51 |
+
hike_garden2: cams without their images!
|
| 52 |
+
'''
|
| 53 |
+
|
| 54 |
+
scenes = '''
|
| 55 |
+
hike_forest1
|
| 56 |
+
hike_forest2
|
| 57 |
+
hike_forest3
|
| 58 |
+
hike_garden3
|
| 59 |
+
hike_indoor
|
| 60 |
+
hike_playground
|
| 61 |
+
hike_university1
|
| 62 |
+
hike_university2
|
| 63 |
+
hike_university3
|
| 64 |
+
hike_university4
|
| 65 |
+
'''
|
| 66 |
+
scenes = break_scenes(scenes)
|
| 67 |
+
root = Path("/your_path/colmap_results/data/statichike")
|
| 68 |
+
|
| 69 |
+
# for sn in scenes:
|
| 70 |
+
# gt_path = f"/your_path/colmap_results/data/statichike/{strip_sn_prefix(sn)}/sparse"
|
| 71 |
+
# gt_path = Path(gt_path)
|
| 72 |
+
# assert not (gt_path / "1").is_dir()
|
| 73 |
+
# print(sn, end=',')
|
| 74 |
+
# print(str(gt_path / "0"))
|
| 75 |
+
# return
|
| 76 |
+
|
| 77 |
+
for sn in scenes:
|
| 78 |
+
img_fnames = list_scene_fnames(sn)
|
| 79 |
+
|
| 80 |
+
raw = load_json(
|
| 81 |
+
root / strip_sn_prefix(sn) / "transforms.json"
|
| 82 |
+
)
|
| 83 |
+
frames = list(sorted(raw['frames'], key=lambda x: x['file_path']))
|
| 84 |
+
|
| 85 |
+
cam_dir = root / strip_sn_prefix(sn) / "sparse"
|
| 86 |
+
assert not (cam_dir / "1").is_dir()
|
| 87 |
+
|
| 88 |
+
fr_fnames = [Path(fr['file_path']).name for fr in frames]
|
| 89 |
+
|
| 90 |
+
c2ws_b = torch.tensor(
|
| 91 |
+
[fr['transform_matrix'] for fr in frames],
|
| 92 |
+
dtype=torch.float64, device="cuda"
|
| 93 |
+
)
|
| 94 |
+
# from opengl to opencv
|
| 95 |
+
c2ws_b[:, :, 1] *= -1
|
| 96 |
+
c2ws_b[:, :, 2] *= -1
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
from metrics import load_colmap_db_cams, pose_stats_suite
|
| 100 |
+
# from read_colmap_model import read_colmap_w2c
|
| 101 |
+
# names, intrs, Rs, ts = read_colmap_w2c(cam_dir / "0")
|
| 102 |
+
names, _, c2ws_a = load_colmap_db_cams(cam_dir / "0", ".bin", return_all=True)
|
| 103 |
+
assert fr_fnames == names
|
| 104 |
+
res = pose_stats_suite(c2ws_a, c2ws_b)
|
| 105 |
+
assert res['ate'] < 1e-5
|
| 106 |
+
assert res['auc_p'][0] > 99.99
|
| 107 |
+
del names, c2ws_a, res
|
| 108 |
+
'''
|
| 109 |
+
the c2w in frames are globally shifted for some reason.
|
| 110 |
+
check that after alignment, error is small.
|
| 111 |
+
'''
|
| 112 |
+
except FileNotFoundError as e:
|
| 113 |
+
print(e)
|
| 114 |
+
|
| 115 |
+
# some imgs are discarded in gt cams
|
| 116 |
+
assert set(fr_fnames).issubset(set(img_fnames))
|
| 117 |
+
# if len(fr_fnames) != len(img_fnames):
|
| 118 |
+
# print(f"{sn} img {len(img_fnames)} vs cam {len(fr_fnames)}")
|
| 119 |
+
|
| 120 |
+
c2ws_b = c2ws_b.cpu().float().tolist()
|
| 121 |
+
all_cams = []
|
| 122 |
+
for i in range(len(frames)):
|
| 123 |
+
all_cams.append({
|
| 124 |
+
'fname': fr_fnames[i],
|
| 125 |
+
'c2w': c2ws_b[i]
|
| 126 |
+
})
|
| 127 |
+
|
| 128 |
+
write_cams(sn, all_cams)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def process_meganerf_cam(cam):
|
| 132 |
+
c2w = cam['c2w'] # [3, 4] opengl: x-right, y-up, z-back
|
| 133 |
+
x, y, z, t = torch.unbind(c2w, dim=1)
|
| 134 |
+
c2w = torch.stack([x, -y, -z, t], dim=-1) # opengl -> opencv
|
| 135 |
+
full_c2w = torch.eye(4)
|
| 136 |
+
full_c2w[0:3] = c2w
|
| 137 |
+
return full_c2w
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def mill19():
|
| 141 |
+
scenes = """
|
| 142 |
+
mill19_building
|
| 143 |
+
mill19_rubble
|
| 144 |
+
"""
|
| 145 |
+
scenes = break_scenes(scenes)
|
| 146 |
+
|
| 147 |
+
for sn in scenes:
|
| 148 |
+
img_fnames = list_scene_fnames(sn)
|
| 149 |
+
cam_dir = Path(f"/your_path/colmap_results/data/mill19/{strip_sn_prefix(sn)}-pixsfm/train/metadata")
|
| 150 |
+
all_cams = []
|
| 151 |
+
for im in tqdm(img_fnames):
|
| 152 |
+
cam_file = cam_dir / Path(im).with_suffix(".pt")
|
| 153 |
+
assert cam_file.is_file()
|
| 154 |
+
cam = torch.load(cam_file, weights_only=True)
|
| 155 |
+
c2w = process_meganerf_cam(cam)
|
| 156 |
+
all_cams.append({
|
| 157 |
+
'fname': im,
|
| 158 |
+
'c2w': c2w.tolist()
|
| 159 |
+
})
|
| 160 |
+
|
| 161 |
+
write_cams(sn, all_cams)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def urban_scene():
|
| 165 |
+
from string import Template
|
| 166 |
+
|
| 167 |
+
scenes = '''
|
| 168 |
+
urbn_Campus
|
| 169 |
+
urbn_Residence
|
| 170 |
+
urbn_Sci-Art
|
| 171 |
+
'''
|
| 172 |
+
scenes = break_scenes(scenes)
|
| 173 |
+
for sn in scenes:
|
| 174 |
+
_sn = strip_sn_prefix(sn).lower()
|
| 175 |
+
lns = load_csv(
|
| 176 |
+
f"/your_path/colmap_results/data/urbanscene3d_meganerf/{_sn}-pixsfm/mappings.txt"
|
| 177 |
+
)
|
| 178 |
+
cam_dir_template = Template(
|
| 179 |
+
"/your_path/colmap_results/data/urbanscene3d_meganerf/${sn}-pixsfm/${split}/metadata"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
im_2_camfn = {e[0]: e[1] for e in lns}
|
| 183 |
+
all_cams = []
|
| 184 |
+
keys = list(sorted(im_2_camfn.keys()))
|
| 185 |
+
for k in tqdm(keys):
|
| 186 |
+
# default assumes it's under train/
|
| 187 |
+
camfn = Path(cam_dir_template.substitute(sn=_sn, split="train")) / im_2_camfn[k]
|
| 188 |
+
if not camfn.is_file():
|
| 189 |
+
camfn = Path(cam_dir_template.substitute(sn=_sn, split="val")) / im_2_camfn[k]
|
| 190 |
+
assert camfn.is_file()
|
| 191 |
+
|
| 192 |
+
cam = torch.load(camfn, weights_only=True)
|
| 193 |
+
c2w = process_meganerf_cam(cam)
|
| 194 |
+
all_cams.append({
|
| 195 |
+
'fname': k,
|
| 196 |
+
'c2w': c2w.tolist()
|
| 197 |
+
})
|
| 198 |
+
|
| 199 |
+
write_cams(sn, all_cams)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def nerf_osr():
|
| 203 |
+
scenes = """
|
| 204 |
+
nosr_europa
|
| 205 |
+
nosr_lk2
|
| 206 |
+
nosr_lwp
|
| 207 |
+
nosr_rathaus
|
| 208 |
+
nosr_schloss
|
| 209 |
+
nosr_st
|
| 210 |
+
nosr_stjacob
|
| 211 |
+
nosr_stjohann
|
| 212 |
+
"""
|
| 213 |
+
scenes = break_scenes(scenes)
|
| 214 |
+
|
| 215 |
+
for sn in scenes:
|
| 216 |
+
img_fnames = list_scene_fnames(sn)
|
| 217 |
+
raw = load_json(
|
| 218 |
+
f"/your_path/colmap_results/data/nerfosr_original/{strip_sn_prefix(sn)}/final/kai_cameras.json"
|
| 219 |
+
)
|
| 220 |
+
all_cams = []
|
| 221 |
+
for im in img_fnames:
|
| 222 |
+
cam = raw[im]
|
| 223 |
+
w2c = torch.tensor(cam['W2C'], dtype=torch.float64).reshape(4, 4)
|
| 224 |
+
c2w = invert_trans(w2c)
|
| 225 |
+
all_cams.append({
|
| 226 |
+
'fname': im,
|
| 227 |
+
'c2w': c2w.tolist()
|
| 228 |
+
})
|
| 229 |
+
|
| 230 |
+
write_cams(sn, all_cams)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def drone_deploy():
|
| 234 |
+
# ruin1 has missing images. ignore that scene
|
| 235 |
+
scenes = """
|
| 236 |
+
dploy_house1
|
| 237 |
+
dploy_house2
|
| 238 |
+
dploy_house3
|
| 239 |
+
dploy_house4
|
| 240 |
+
dploy_pipes1
|
| 241 |
+
dploy_ruins1
|
| 242 |
+
dploy_ruins2
|
| 243 |
+
dploy_ruins3
|
| 244 |
+
dploy_tower1
|
| 245 |
+
dploy_tower2
|
| 246 |
+
"""
|
| 247 |
+
scenes = break_scenes(scenes)
|
| 248 |
+
for sn in scenes:
|
| 249 |
+
img_fnames = list_scene_fnames(sn)
|
| 250 |
+
raw = load_json(
|
| 251 |
+
f"/your_path/colmap_results/data/dronedeploy/{strip_sn_prefix(sn)}/cameras.json"
|
| 252 |
+
)
|
| 253 |
+
# keys: 'frames', 'fl_x', 'fl_y', 'k1', 'k2', 'p1', 'p2', 'k3', 'k4', 'k5', 'k6', 'cx', 'cy', 'w', 'h',
|
| 254 |
+
# 'camera_angle_x', 'camera_angle_y', 'aabb_scale'
|
| 255 |
+
frames = raw['frames']
|
| 256 |
+
frames = list(sorted(frames, key=lambda x: x['file_path']))
|
| 257 |
+
|
| 258 |
+
# print(f"{sn}, {len(img_fnames)} vs {len(frames)}")
|
| 259 |
+
_fnames = [
|
| 260 |
+
Path(e['file_path']).name
|
| 261 |
+
for e in frames
|
| 262 |
+
]
|
| 263 |
+
|
| 264 |
+
has_missing_img = False
|
| 265 |
+
for e in _fnames:
|
| 266 |
+
if e not in img_fnames:
|
| 267 |
+
has_missing_img = True
|
| 268 |
+
# print(f"warn! img for {e} missing")
|
| 269 |
+
|
| 270 |
+
if has_missing_img:
|
| 271 |
+
# ruin1 has missing images. ignore that scene
|
| 272 |
+
continue
|
| 273 |
+
|
| 274 |
+
# some imgs don't have gt cam
|
| 275 |
+
# assert img_fnames == _fnames
|
| 276 |
+
|
| 277 |
+
all_cams = []
|
| 278 |
+
for fr in frames:
|
| 279 |
+
c2w = torch.tensor(fr['transform_matrix'])
|
| 280 |
+
x, y, z, t = torch.unbind(c2w, dim=1)
|
| 281 |
+
c2w = torch.stack([x, -y, -z, t], dim=-1) # opengl -> opencv
|
| 282 |
+
all_cams.append({
|
| 283 |
+
'fname': Path(fr['file_path']).name,
|
| 284 |
+
'c2w': c2w.tolist()
|
| 285 |
+
})
|
| 286 |
+
|
| 287 |
+
write_cams(sn, all_cams)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def mipnerf360():
|
| 291 |
+
scenes = """
|
| 292 |
+
m360_flowers
|
| 293 |
+
m360_room
|
| 294 |
+
m360_counter
|
| 295 |
+
m360_stump
|
| 296 |
+
m360_kitchen
|
| 297 |
+
m360_garden
|
| 298 |
+
m360_bicycle
|
| 299 |
+
m360_bonsai
|
| 300 |
+
m360_treehill
|
| 301 |
+
"""
|
| 302 |
+
scenes = break_scenes(scenes)
|
| 303 |
+
for sn in scenes:
|
| 304 |
+
path = f"/your_path/nerfbln_dset/mipnerf360/{strip_sn_prefix(sn)}/sparse/0"
|
| 305 |
+
print(sn, end=',')
|
| 306 |
+
print(path)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def eyeful():
|
| 310 |
+
scenes = """
|
| 311 |
+
eft_apartment
|
| 312 |
+
eft_kitchen
|
| 313 |
+
"""
|
| 314 |
+
|
| 315 |
+
# def make_filter_f(sensor_prefix):
|
| 316 |
+
# return lambda fr: fr['cameraId'].split('/')[0] != sensor_prefix
|
| 317 |
+
|
| 318 |
+
scenes = break_scenes(scenes)
|
| 319 |
+
for sn in scenes:
|
| 320 |
+
frames = load_json(
|
| 321 |
+
Path(f"/your_path/colmap_results/data/eyefultower/{strip_sn_prefix(sn)}/cameras.json")
|
| 322 |
+
)['KRT']
|
| 323 |
+
frames = sorted(frames, key=lambda x: x['cameraId'])
|
| 324 |
+
|
| 325 |
+
# # filter low overlap cameras
|
| 326 |
+
# prefix_to_discard = {
|
| 327 |
+
# 'eft_apartment': '31',
|
| 328 |
+
# 'eft_kitchen': '28'
|
| 329 |
+
# }[sn]
|
| 330 |
+
# n_before = len(frames)
|
| 331 |
+
# frames = list(filter(make_filter_f(prefix_to_discard), frames))
|
| 332 |
+
# n_after = len(frames)
|
| 333 |
+
# print(f"{n_before} vs {n_after}")
|
| 334 |
+
|
| 335 |
+
all_cams = []
|
| 336 |
+
for fr in tqdm(frames):
|
| 337 |
+
w2c = torch.tensor(fr['T']).T # note the transpose. col_major -> row major
|
| 338 |
+
c2w = invert_trans(w2c)
|
| 339 |
+
all_cams.append({
|
| 340 |
+
'fname': f"{fr['cameraId']}.jpg",
|
| 341 |
+
'c2w': c2w.tolist()
|
| 342 |
+
})
|
| 343 |
+
|
| 344 |
+
write_cams(sn, all_cams)
|
| 345 |
+
|
| 346 |
+
# I renamed the gt jsons that discarded low overlap cams as
|
| 347 |
+
# eft_apartment_remove_31.json
|
| 348 |
+
# eft_kitchen_remove_28.json
|
| 349 |
+
# they are created on 25.03.10 14:54
|
| 350 |
+
# the other gt files are made from 25.02.23 - 23.02.26
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def tnt():
|
| 354 |
+
scenes = '''
|
| 355 |
+
tnt_advn_Auditorium
|
| 356 |
+
tnt_advn_Ballroom
|
| 357 |
+
tnt_advn_Courtroom
|
| 358 |
+
tnt_advn_Museum
|
| 359 |
+
tnt_advn_Palace
|
| 360 |
+
tnt_advn_Temple
|
| 361 |
+
tnt_intrmdt_Family
|
| 362 |
+
tnt_intrmdt_Francis
|
| 363 |
+
tnt_intrmdt_Horse
|
| 364 |
+
tnt_intrmdt_Lighthouse
|
| 365 |
+
tnt_intrmdt_M60
|
| 366 |
+
tnt_intrmdt_Panther
|
| 367 |
+
tnt_intrmdt_Playground
|
| 368 |
+
tnt_intrmdt_Train
|
| 369 |
+
tnt_trng_Barn
|
| 370 |
+
tnt_trng_Caterpillar
|
| 371 |
+
tnt_trng_Church
|
| 372 |
+
tnt_trng_Courthouse
|
| 373 |
+
tnt_trng_Ignatius
|
| 374 |
+
tnt_trng_Meetingroom
|
| 375 |
+
tnt_trng_Truck
|
| 376 |
+
'''
|
| 377 |
+
scenes = break_scenes(scenes)
|
| 378 |
+
for sn in scenes:
|
| 379 |
+
_sn = sn.split('_')[-1].lower()
|
| 380 |
+
gt_cam_path = f"/your_path/nerfbln_dset/tnt/{_sn}/sparse" # no 0/
|
| 381 |
+
print(sn, end=',')
|
| 382 |
+
print(gt_cam_path)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def eth3d_dslr():
|
| 386 |
+
scenes = '''
|
| 387 |
+
eth3d_dslr_botanical_garden
|
| 388 |
+
eth3d_dslr_boulders
|
| 389 |
+
eth3d_dslr_bridge
|
| 390 |
+
eth3d_dslr_courtyard
|
| 391 |
+
eth3d_dslr_delivery_area
|
| 392 |
+
eth3d_dslr_door
|
| 393 |
+
eth3d_dslr_electro
|
| 394 |
+
eth3d_dslr_exhibition_hall
|
| 395 |
+
eth3d_dslr_facade
|
| 396 |
+
eth3d_dslr_kicker
|
| 397 |
+
eth3d_dslr_lecture_room
|
| 398 |
+
eth3d_dslr_living_room
|
| 399 |
+
eth3d_dslr_lounge
|
| 400 |
+
eth3d_dslr_meadow
|
| 401 |
+
eth3d_dslr_observatory
|
| 402 |
+
eth3d_dslr_office
|
| 403 |
+
eth3d_dslr_old_computer
|
| 404 |
+
eth3d_dslr_pipes
|
| 405 |
+
eth3d_dslr_playground
|
| 406 |
+
eth3d_dslr_relief
|
| 407 |
+
eth3d_dslr_relief_2
|
| 408 |
+
eth3d_dslr_statue
|
| 409 |
+
eth3d_dslr_terrace
|
| 410 |
+
eth3d_dslr_terrace_2
|
| 411 |
+
eth3d_dslr_terrains
|
| 412 |
+
'''
|
| 413 |
+
scenes = break_scenes(scenes)
|
| 414 |
+
|
| 415 |
+
# # used to edit db_mapping.csv
|
| 416 |
+
# for sn in scenes:
|
| 417 |
+
# db_path = f"/your_path/sfm_workspace/runs_db/d_{sn}/database.db"
|
| 418 |
+
# assert Path(db_path).is_file()
|
| 419 |
+
# print(sn, end=',')
|
| 420 |
+
# print(db_path)
|
| 421 |
+
# return
|
| 422 |
+
|
| 423 |
+
for sn in scenes:
|
| 424 |
+
_sn = sn[len('eth3d_dslr_'):]
|
| 425 |
+
gt_cam_path = f"/your_path/colmap_results/data/eth3d_dslr/{_sn}/dslr_calibration_undistorted"
|
| 426 |
+
assert Path(gt_cam_path).is_dir()
|
| 427 |
+
print(sn, end=',')
|
| 428 |
+
print(gt_cam_path)
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def main():
|
| 432 |
+
# hike()
|
| 433 |
+
# mill19()
|
| 434 |
+
# nerf_osr()
|
| 435 |
+
# mipnerf360()
|
| 436 |
+
# eyeful()
|
| 437 |
+
# tnt()
|
| 438 |
+
# urban_scene()
|
| 439 |
+
# drone_deploy()
|
| 440 |
+
# eth3d_dslr()
|
| 441 |
+
pass
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
if __name__ == "__main__":
|
| 445 |
+
main()
|