File size: 3,085 Bytes
10ebdc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa9bb80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': Anthracnose
          '1': algal_leaf
          '2': bird_eye_spot
          '3': brown_blight
          '4': gray_light
          '5': healthy
          '6': red_leaf_spot
          '7': white_spot
  splits:
  - name: train
    num_bytes: 622082045.0
    num_examples: 708
  - name: validation
    num_bytes: 79334678.0
    num_examples: 88
  - name: test
    num_bytes: 79495048.0
    num_examples: 89
  download_size: 780933256
  dataset_size: 780911771.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# Tea Sickness Dataset

This dataset contains images of tea leaves affected by seven common diseases, along with healthy examples. It is designed for use in machine learning tasks such as classification, particularly leveraging transfer learning techniques.

## Dataset Summary

The dataset includes tea leaves from eight categories:

| Label ID | Class Name       |
|----------|------------------|
| 0        | Anthracnose      |
| 1        | Algal Leaf Spot  |
| 2        | Bird Eye Spot    |
| 3        | Brown Blight     |
| 4        | Gray Blight      |
| 5        | Healthy          |
| 6        | Red Leaf Spot    |
| 7        | White Spot       |

Each class contains more than 100 images, captured from tea plants in the Johnstone Boiyon farm, Koiwa location, Bomet County, using a clone of 1510. The dataset is useful for developing models that can predict the presence of diseases in tea leaves, particularly in agricultural and sustainability contexts.

## Dataset Structure

### Features

- `image`: An RGB image of a tea leaf (PIL Image format)
- `label`: Class label as integer (0–7) with corresponding disease names

### Splits

| Split       | Number of Examples | Size (Bytes) |
|-------------|--------------------|--------------|
| Train       | 708                | 622,082,045  |
| Validation  | 88                 | 79,334,678   |
| Test        | 89                 | 79,495,048   |
| **Total**   | **885**            | **780,911,771** |

## Usage

This dataset is suitable for:

- Fine-tuning image classification models
- Research on plant disease detection
- Transfer learning and domain adaptation experiments

## Citation

If you use this dataset in your research, please cite it as:

```bibtex
@article{kimutai2022tea,
  title     = {Tea sickness dataset},
  author    = {Kimutai, Gibson and Förster, Anna},
  journal   = {Mendeley Data},
  volume    = {2},
  year      = {2022},
  doi       = {10.17632/j32xdt2ff5.2}
}
```

## License

**CC BY 4.0** — You are free to use, share, and adapt the dataset, provided appropriate credit is given.

## Acknowledgements

This dataset was collected by researchers from the University of Rwanda and the University of Bremen. We thank the contributors for making the dataset publicly available to advance agricultural AI applications.