--- library_name: transformers license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract tags: - generated_from_trainer model-index: - name: mistral-7b-instruct-v0.3-mimic4-adapt-l2r results: [] --- # mistral-7b-instruct-v0.3-mimic4-adapt-l2r This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on the None dataset. It achieves the following results on the evaluation set: - Ndcg: 0.9470 - Loss: 2071.8673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Ndcg | Validation Loss | |:-------------:|:-----:|:----:|:------:|:---------------:| | No log | 1.0 | 9 | 0.9469 | 2076.8880 | | 2178.5025 | 1.8 | 16 | 0.9470 | 2071.8673 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1