update readme file
Browse files
README.md
CHANGED
@@ -10,3 +10,66 @@ license: apache-2.0
|
|
10 |
language:
|
11 |
- en
|
12 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
language:
|
11 |
- en
|
12 |
---
|
13 |
+
|
14 |
+
|
15 |
+
Here's your updated `README.md` with your Hugging Face username:
|
16 |
+
|
17 |
+
```markdown
|
18 |
+
# Llama-3.2-3B-Instruct
|
19 |
+
|
20 |
+
[](https://huggingface.co/deepakkumar07/Llama-3.2-3B-Instruct)
|
21 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
**Llama-3.2-3B-Instruct** is a fine-tuned version of the **Llama-3.2-3B** base model, optimized for **instruction-following** and **conversational AI** tasks. This model is trained using **Unsloth** for efficient fine-tuning and inference. It supports the **GGUF format**, making it ideal for running on various hardware setups.
|
25 |
+
|
26 |
+
## Features
|
27 |
+
- 🦙 **Fine-tuned for instruction-following**
|
28 |
+
- ⚡ **Optimized for GGUF format** (efficient inference)
|
29 |
+
- 🔥 **Compatible with Transformers & Text-Generation-Inference**
|
30 |
+
- 🌍 **Supports English language**
|
31 |
+
- 🏗️ **Trained using Unsloth for high performance**
|
32 |
+
|
33 |
+
## Model Usage
|
34 |
+
|
35 |
+
### Install Dependencies
|
36 |
+
To use this model, install the required libraries:
|
37 |
+
```bash
|
38 |
+
pip install transformers text-generation gguf unsloth
|
39 |
+
```
|
40 |
+
|
41 |
+
### Load the Model
|
42 |
+
```python
|
43 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
+
|
45 |
+
model_name = "deepakkumar07/Llama-3.2-3B-Instruct"
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
48 |
+
|
49 |
+
input_text = "What is the capital of France?"
|
50 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
51 |
+
|
52 |
+
output = model.generate(**inputs)
|
53 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
54 |
+
```
|
55 |
+
|
56 |
+
### GGUF Inference
|
57 |
+
For GGUF-based inference, use **llama.cpp** or **text-generation-inference**:
|
58 |
+
```bash
|
59 |
+
pip install llama-cpp-python
|
60 |
+
```
|
61 |
+
```python
|
62 |
+
from llama_cpp import Llama
|
63 |
+
|
64 |
+
llm = Llama(model_path="Llama-3.2-3B-Instruct.gguf")
|
65 |
+
response = llm("Tell me a joke.")
|
66 |
+
print(response)
|
67 |
+
```
|
68 |
+
|
69 |
+
## License
|
70 |
+
This model is licensed under **Apache 2.0**.
|
71 |
+
|
72 |
+
## Acknowledgments
|
73 |
+
- [Meta's LLaMA](https://huggingface.co/meta-llama)
|
74 |
+
- [Unsloth Optimization](https://github.com/unslothai)
|
75 |
+
- Hugging Face 🤗 Community
|