--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - deepinfinityai/29_lines_robust_dataset metrics: - wer model-index: - name: v5_Robust_Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 29 Lines type: deepinfinityai/29_lines_robust_dataset metrics: - name: Wer type: wer value: 31.221719457013574 --- # v5_Robust_Model This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the 29 Lines dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Wer: 31.2217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 795 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.8614 | 1.25 | 50 | 0.2854 | 17.6471 | | 0.1863 | 2.5 | 100 | 0.0002 | 25.7919 | | 0.0009 | 3.75 | 150 | 0.0001 | 17.1946 | | 0.0001 | 5.0 | 200 | 0.0001 | 19.0045 | | 0.0001 | 6.25 | 250 | 0.0001 | 23.9819 | | 0.0001 | 7.5 | 300 | 0.0001 | 25.7919 | | 0.0001 | 8.75 | 350 | 0.0001 | 22.6244 | | 0.0001 | 10.0 | 400 | 0.0001 | 24.8869 | | 0.0001 | 11.25 | 450 | 0.0001 | 23.5294 | | 0.0001 | 12.5 | 500 | 0.0001 | 27.1493 | | 0.0001 | 13.75 | 550 | 0.0001 | 26.6968 | | 0.0001 | 15.0 | 600 | 0.0001 | 28.5068 | | 0.0001 | 16.25 | 650 | 0.0001 | 29.4118 | | 0.0001 | 17.5 | 700 | 0.0001 | 29.8643 | | 0.0001 | 18.75 | 750 | 0.0001 | 31.2217 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0