File size: 5,678 Bytes
fde2cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: apache-2.0
datasets:
- deepvk/synthetic-classes
language:
- ru
base_model:
- deepvk/USER2-base
pipeline_tag: zero-shot-classification
---

# GeRaCl-USER2-base

**GeRaCl** is a **Ge**neral **Ra**pid **Cl**assifer designed to perform zero-shot classification tasks primarily on Russian texts.
 

This is a model with 155M parameters that is build on top of the [USER2-base](https://huggingface.co/deepvk/USER2-base) sentence encoder (149M) and is fine-tuned for zero-shot classification task.

## Performance

To evaluate the model, we measure quality on multiclass classification tasks from the `MTEB-rus` benchmark.

**MTEB-rus**

| Model  | Size  | Hidden Dim | Context Length  | Mean(task) | Kinopoisk | Headlines | GRNTI | OECD | Inappropriateness |
|----------------------------------------------------------------------------------------------:|:-----:|:----------:|:--------------:|:----------:|:--------------:|:-------------:|:----------:|:------------------------:|:-----------------:|
| `GeRaCl-USER2-base`                      | 155M | 768   | 8192  | 0.65 | 0.61 | 0.80 | 0.63 | 0.48 | 0.71 |
| `USER2-base`                     | 149M | 768   | 8192 | 0.52 | 0.50 | 0.65 | 0.56 | 0.39 | 0.51 |
| `USER-bge-m3`                     | 359M | 1024   | 8192 | 0.53 | 0.60 | 0.73 | 0.43 | 0.28 | 0.62 |
| `multilingual-e5-large-instruct` | 560M | 1024  | 512  | 0.63 | 0.56 | 0.83 | 0.62 | 0.46 | 0.67 |
| `mDeBERTa-v3-base-mnli-xnli`             | 279M | 768  | 512 | 0.45 | 0.54 | 0.53 | 0.34 | 0.23 | 0.62 |
| `bge-m3-zeroshot-v2.0`                 | 568M | 1024  | 8192  | 0.60 | 0.65 | 0.72 | 0.53 | 0.41 | 0.67 |
| `Qwen2.5-1.5B-Instruct`                 | 1,5B | 1536  | 128K  | 0.56 | 0.62 | 0.55 | 0.51 | 0.41 | 0.71 |
| `Qwen2.5-3B-Instruct`                 | 3B | 2048  | 128K  | 0.63 | 0.63 | 0.74 | 0.60 | 0.43 | 0.75 |

## Usage

### Prefixes

This model is based on the USER2-base sentence encoder. This model uses the "classification: " prefix to work on classification tasks.

### Code

#### Single classification scenario

```python
from transformers import AutoTokenizer
from geracl import GeraclHF, ZeroShotClassificationPipeline

model = GeraclHF.from_pretrained('deepvk/GeRaCl-USER2-base').to('cuda').eval()
tokenizer  = AutoTokenizer.from_pretrained('deepvk/GeRaCl-USER2-base')

pipe = ZeroShotClassificationPipeline(model, tokenizer, device="cuda")

text = "Утилизация катализаторов: как неплохо заработать"
labels = ["экономика", "происшествия", "политика", "культура", "наука", "спорт"]
result = pipe(text, labels, batch_size=1)[0]

print(labels[result])
```

#### Multiple classification scenarios

```python
from transformers import AutoTokenizer
from geracl import GeraclHF, ZeroShotClassificationPipeline

model = GeraclHF.from_pretrained('deepvk/GeRaCl-USER2-base').to('cuda').eval()
tokenizer  = AutoTokenizer.from_pretrained('deepvk/GeRaCl-USER2-base')

pipe = ZeroShotClassificationPipeline(model, tokenizer, device="cuda")

texts = [
  "Утилизация катализаторов: как неплохо заработать",
  "Мне не понравился этот фильм"
]
labels = [
  ["экономика", "происшествия", "политика", "культура", "наука", "спорт"],
  ["нейтральный", "позитивный", "негативный"]
]
results = pipe(texts, labels, batch_size=2)

for i in range(len(labels)):
    print(labels[i][results[i]])
```

## Training details

This is the base version with 155 million parameters, based on [`USER2-base`](https://huggingface.co/deepvk/USER2-base) sentence encoder. This model uses the GLiNER architecture, but it has only one vector of similarity scores instead of a full matrix of similarities.
Compared to the USER2-base model, there are two additional MLP layers. One is for the text embeddings and another is for the classes embeddings. You can see the detailed model's architecture on the picture below.

<img src="assets/architecture.png" alt="GeRaCl architecture" width="600"/>

The training set is built entirely from splits of the  [`deepvk/CLAZER`](https://huggingface.co/datasets/deepvk/synthetic-classes) dataset. It is a concatenation of three sub-datasets:
 - **Synthetic classes part**. For every training example we randomly chose one of the five class lists (`classes_0``classes_4`) and paired it with the sample’s text. The validation and test splits were added unchanged.
 - **RU-MTEB part**. The entire `ru_mteb_classes` dataset was added to the mix.
 - **RU-MTEB extended part**. The entire `ru_mteb_extended_classes` dataset was added to the mix.


| Dataset                     | # Samples |
|----------------------------:|:----:|
| [CLAZER/synthetic_classes_train](https://huggingface.co/datasets/deepvk/synthetic-classes/viewer/synthetic_classes_train)                    | 93K |
| [CLAZER/synthetic_classes](https://huggingface.co/datasets/deepvk/synthetic-classes/viewer/synthetic_classes) (val and test)                    | 6K |
| [CLAZER/ru_mteb_classes](https://huggingface.co/datasets/deepvk/synthetic-classes/viewer/ru_mteb_classes/)                    | 52K  |
| [CLAZER/ru_mteb_extended_classes](https://huggingface.co/datasets/deepvk/synthetic-classes/viewer/ru_mteb_extended_classes)             | 93K  |
| **Total**                   | 244K |

## Citations
```
@misc{deepvk2025geracl,
    title={GeRaCl},
    author={Vyrodov, Mikhail and Spirin, Egor and Sokolov Andrey},
    url={https://huggingface.co/deepvk/GeRaCl-USER2-base},
    publisher={Hugging Face}
    year={2025},
}
```