File size: 4,220 Bytes
5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a 5b22dce df8263a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
- generated_from_trainer
datasets:
- demoversion/cf-cpp-to-python-code-generation
model-index:
- name: outputs/cf-llm-finetune-llama-3.2-3b-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0`
```yaml
base_model: meta-llama/Llama-3.2-3B-Instruct
load_in_8bit: true
load_in_4bit: false
datasets:
- path: ./data/train_openai_response_transformed.jsonl
type: chat_template
field_messages: messages
message_property_mappings:
role: role
content: content
val_file: ./data/val_openai_response_transformed.jsonl
val_set_size: 0.0
output_dir: ./outputs/cf-llm-finetune-llama-3.2-3b-lora
adapter: lora
lora_model_dir:
sequence_len: 4096
sample_packing: false
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: "<|end_of_text|>"
```
</details><br>
# Llama-3.2-3B-Instruct-PEFT-code-generation
This model is a fine tuned [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on a synthetic dataset of C++ → Python code translations from Codeforces.
📦 GitHub repo: [DemoVersion/cf-llm-finetune](https://github.com/DemoVersion/cf-llm-finetune)
📑 Dataset Creation [DATASET.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/DATASET.md)
📑 Training [TRAIN.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/TRAIN.md)
📚 Dataset on Hugging Face: [demoversion/cf-cpp-to-python-code-generation](https://huggingface.co/datasets/demoversion/cf-cpp-to-python-code-generation)
For dataset generation, training, and inference check the [Github repo](https://github.com/DemoVersion/cf-llm-finetune).
## Model description
A lightweight LLaMA 3.2 model fine-tuned for competitive programming code translation, from ICPC-style C++ to Python using LoRA adapters.
## Intended uses & limitations
**Use for:**
- Translating competitive programming C++ solutions to Python
- Code understanding in educational or automation tools
**Limitations:**
- Not general-purpose code translation
- Python outputs are synthetically generated using GPT-4.1
- Focused only on ICPC-style problems
## Training and evaluation data
Training and Evaluation data:
🧾 [demoversion/cf-cpp-to-python-code-generation](https://huggingface.co/datasets/demoversion/cf-cpp-to-python-code-generation)
Built from:
- [open-r1/codeforces-submissions](https://huggingface.co/datasets/open-r1/codeforces-submissions)
- [open-r1/codeforces](https://huggingface.co/datasets/open-r1/codeforces)
C++ submissions were filtered and paired with GPT-4.1-generated Python translations. Dataset split: 1,400 train / 300 val / 300 test. To underestand how the dataset was created check [DATASET.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/DATASET.md)
## Training procedure
- Adapter: LoRA (`r=32`, `alpha=16`, `dropout=0.05`)
- Optimizer: `adamw_bnb_8bit`
- LR: `2e-4`, scheduler: `cosine`
- Batch size: 2 × 4 (grad accumulation) = total 8
- Training steps: 688
Full config: [TRAIN.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/TRAIN.md)
## Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- PyTorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
|