--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct tags: - generated_from_trainer datasets: - demoversion/cf-cpp-to-python-code-generation model-index: - name: outputs/cf-llm-finetune-llama-3.2-3b-lora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0` ```yaml base_model: meta-llama/Llama-3.2-3B-Instruct load_in_8bit: true load_in_4bit: false datasets: - path: ./data/train_openai_response_transformed.jsonl type: chat_template field_messages: messages message_property_mappings: role: role content: content val_file: ./data/val_openai_response_transformed.jsonl val_set_size: 0.0 output_dir: ./outputs/cf-llm-finetune-llama-3.2-3b-lora adapter: lora lora_model_dir: sequence_len: 4096 sample_packing: false eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 bf16: auto tf32: false gradient_checkpointing: true resume_from_checkpoint: logging_steps: 1 flash_attention: false warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: pad_token: "<|end_of_text|>" ```

# Llama-3.2-3B-Instruct-PEFT-code-generation This model is a fine tuned [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on a synthetic dataset of C++ โ†’ Python code translations from Codeforces. ๐Ÿ“ฆ GitHub repo: [DemoVersion/cf-llm-finetune](https://github.com/DemoVersion/cf-llm-finetune) ๐Ÿ“‘ Dataset Creation [DATASET.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/DATASET.md) ๐Ÿ“‘ Training [TRAIN.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/TRAIN.md) ๐Ÿ“š Dataset on Hugging Face: [demoversion/cf-cpp-to-python-code-generation](https://huggingface.co/datasets/demoversion/cf-cpp-to-python-code-generation) For dataset generation, training, and inference check the [Github repo](https://github.com/DemoVersion/cf-llm-finetune). **๐Ÿ“š Main medium article**: [Toward fine-tuning Llama 3.2 using PEFT for Code Generation](https://medium.com/@haddadhesam/towards-fine-tuning-llama-3-2-using-peft-for-code-generation-63e3991c26db) **๐Ÿ“š Medium article for inference with GGUF format**: [How to inference with GGUF format](https://haddadhesam.medium.com/one-file-to-rule-them-all-gguf-for-local-llm-testing-and-deployment-208b85934434) ## Model description A lightweight LLaMA 3.2 model fine-tuned for competitive programming code translation, from ICPC-style C++ to Python using LoRA adapters. ## Intended uses & limitations **Use for:** - Translating competitive programming C++ solutions to Python - Code understanding in educational or automation tools **Limitations:** - Not general-purpose code translation - Python outputs are synthetically generated using GPT-4.1 - Focused only on ICPC-style problems ## Training and evaluation data Training and Evaluation data: ๐Ÿงพ [demoversion/cf-cpp-to-python-code-generation](https://huggingface.co/datasets/demoversion/cf-cpp-to-python-code-generation) Built from: - [open-r1/codeforces-submissions](https://huggingface.co/datasets/open-r1/codeforces-submissions) - [open-r1/codeforces](https://huggingface.co/datasets/open-r1/codeforces) C++ submissions were filtered and paired with GPT-4.1-generated Python translations. Dataset split: 1,400 train / 300 val / 300 test. To underestand how the dataset was created check [DATASET.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/DATASET.md) ## Training procedure - Adapter: LoRA (`r=32`, `alpha=16`, `dropout=0.05`) - Optimizer: `adamw_bnb_8bit` - LR: `2e-4`, scheduler: `cosine` - Batch size: 2 ร— 4 (grad accumulation) = total 8 - Training steps: 688 Full config: [TRAIN.md](https://github.com/DemoVersion/cf-llm-finetune/blob/main/TRAIN.md) ## Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - PyTorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2