File size: 5,296 Bytes
a6cf7f9
 
 
 
 
 
191b681
 
 
 
 
 
 
a6cf7f9
 
191b681
a6cf7f9
191b681
a6cf7f9
191b681
a6cf7f9
191b681
 
 
 
 
 
 
a6cf7f9
 
 
191b681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6f603
191b681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c59463
 
 
 
 
 
191b681
 
 
 
a6cf7f9
191b681
a6cf7f9
191b681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6cf7f9
 
 
191b681
 
 
 
a6cf7f9
 
191b681
 
a6cf7f9
 
 
191b681
 
 
 
a6cf7f9
191b681
a6cf7f9
191b681
 
 
 
 
 
 
 
 
a6cf7f9
191b681
 
a6cf7f9
191b681
a6cf7f9
191b681
a6cf7f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
library_name: transformers
tags:
- unsloth
- trl
- grpo
license: mit
datasets:
- eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1
language:
- en
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
---

# Qwen2.5-1.5B-Instruct Fine-Tuned on GSM8K with DeepSeek Augmentation

## Model Overview

This model is a fine-tuned version of **Qwen2.5-1.5B-Instruct**, designed for **mathematical problem-solving and structured reasoning**. It is trained on an **enhanced GSM8K dataset** incorporating **Chain-of-Thought (CoT) reasoning** augmented by **DeepSeek AI**.

### Key Features
- **Base Model:** Qwen2.5-1.5B-Instruct
- **Fine-Tuned On:** GSM8K enhanced with DeepSeek-V3
- **Optimized for:** Logical problem-solving and math reasoning
- **Fine-tuning method:** LoRA (Low-Rank Adaptation)
- **Inference-ready:** Available on **Hugging Face** and compatible with `llama.cpp`
- **Supports GGUF:** Optimized versions for **Q4_K_M, Q8_0, Q5_K_M, and FP16**

## Model Details

- **Developed by:** [Your Name or Organization]
- **Model Type:** Causal Language Model (Text Generation)
- **Languages:** English (`en`)
- **License:** MIT License
- **Fine-tuned from:** `Qwen/Qwen2.5-1.5B-Instruct`
- **Training Library:** `transformers` + `unsloth` + `trl`
- **Quantization:** GGUF (`Q4_K_M, Q8_0, Q5_K_M, f16`)

🔗 **Hugging Face Repository:**  
👉 [Fine-tuned Qwen2.5-1.5B-Instruct](https://huggingface.co/eagle0504/qwen-2_5-1_5b-instruct-using-openai-gsm8k-data-enhanced-with-deepseek-v1)

## How to Use the Model

### Using `transformers` in Python
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "eagle0504/qwen-2_5-1_5b-instruct-using-openai-gsm8k-data-enhanced-with-deepseek-v"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Example inference
question = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"
inputs = tokenizer(question, return_tensors="pt").to(device)
output = model.generate(**inputs, max_length=200)

# Decode response
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## Running the Model with `llama.cpp`

### Step 1: Install `llama.cpp`
```sh
brew install llama.cpp
```

### Step 2: Download the Model
```sh
mkdir -p ~/llama_models && cd ~/llama_models
wget https://huggingface.co/eagle0504/qwen-2_5-1_5b-instruct-using-openai-gsm8k-data-enhanced-with-deepseek-v1/resolve/main/q8_0.gguf
```

### Step 3: Run the Model
```sh
llama-cli -m ~/llama_models/q8_0.gguf --interactive
```

Or you can use the following:

```sh
llama-cli -hf eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small:Q8_0
```

### Step 4: Test with a Prompt
```sh
llama-cli -m ~/llama_models/q8_0.gguf -p "Explain quantum computing in simple terms."
```

## Training Details

### Dataset Used
The model was fine-tuned on:  
🔹 [`eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`](https://huggingface.co/datasets/eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1)

This dataset contains:
- **8K training samples**
- **1K testing samples**
- Features: `question`, `answer`, `cot` (Chain-of-Thought)

### Training Configuration
- **Framework:** `transformers` + `unsloth` + `trl`
- **Optimization:** LoRA applied to QKV projections
- **Learning Rate:** `1e-6`
- **AdamW Optimizer (8-bit)**
- **Mixed Precision (`bf16` or `fp16`)**
- **Batch Size:** `8`
- **Max Sequence Length:** `1024`

## Model Performance

### Training Loss
| Step | Training Loss |
|------|--------------|
| 10   | 1.1335 |
| 100  | 0.9770 |
| 3100 | 0.1722 |
| 9340 | 0.1553 |

## Bias, Risks, and Limitations

### Potential Risks
- May **hallucinate** incorrect reasoning steps if prompts are unclear.
- Could struggle with **complex mathematical problems** outside its training data.
- **Limited generalization** to non-math reasoning tasks.

### Recommendations
- If using this model for **critical applications**, verify outputs with human review.
- For **better performance**, fine-tune on **larger datasets** with real-world numerical reasoning.

## Environmental Impact

**Estimated Carbon Emissions:**
- **Hardware Used:** NVIDIA A100 GPU
- **Training Time:** ~5 hours
- **Estimated CO2 Emitted:** ~8.2 kg CO2eq (via [ML Impact Calculator](https://mlco2.github.io/impact#compute))

## Citation

If you use this model in your research, please cite it as:
```bibtex
@misc{coming,
  title={Fine-Tuned Qwen2.5-1.5B-Instruct on GSM8K with DeepSeek Augmentation},
  author={Your Name},
  year={2024},
  url={https://huggingface.co/eagle0504/qwen-2_5-1_5b-instruct-using-openai-gsm8k-data-enhanced-with-deepseek-v1}
}
```

## Contact
For questions, suggestions, or issues, reach out via [Hugging Face Discussions](https://huggingface.co/eagle0504/qwen-2_5-1_5b-instruct-using-openai-gsm8k-data-enhanced-with-deepseek-v1/discussions).

---

🎉 **Thank you for using this model!** If you find it useful, please ⭐ it on **Hugging Face**! 🚀🔥