eagle0504 commited on
Commit
1056149
·
verified ·
1 Parent(s): e2c075c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -149
README.md CHANGED
@@ -4,199 +4,189 @@ tags:
4
  - unsloth
5
  - trl
6
  - grpo
 
 
 
 
 
 
 
7
  ---
8
 
9
- # Model Card for Model ID
10
 
11
- <!-- Provide a quick summary of what the model is/does. -->
12
 
 
13
 
 
14
 
15
- ## Model Details
 
 
 
 
 
 
16
 
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
-
31
- ### Model Sources [optional]
32
-
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
-
43
- ### Direct Use
44
-
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
-
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
-
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to get started with the model.
76
-
77
- [More Information Needed]
78
-
79
- ## Training Details
80
-
81
- ### Training Data
82
-
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
86
-
87
- ### Training Procedure
88
-
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
97
-
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Evaluation
107
-
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
- ### Testing Data, Factors & Metrics
111
-
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
 
122
- [More Information Needed]
123
 
124
- #### Metrics
 
 
 
 
 
 
125
 
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
127
 
128
- [More Information Needed]
129
 
130
- ### Results
131
 
132
- [More Information Needed]
 
133
 
134
- #### Summary
 
 
135
 
 
 
 
 
136
 
 
 
 
137
 
138
- ## Model Examination [optional]
 
 
 
139
 
140
- <!-- Relevant interpretability work for the model goes here -->
 
 
141
 
142
- [More Information Needed]
143
 
144
- ## Environmental Impact
145
 
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
 
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
149
 
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
 
156
- ## Technical Specifications [optional]
 
 
 
157
 
158
- ### Model Architecture and Objective
 
 
 
159
 
160
- [More Information Needed]
161
 
162
- ### Compute Infrastructure
163
 
164
- [More Information Needed]
 
 
165
 
166
- #### Hardware
 
 
 
167
 
168
- [More Information Needed]
 
 
 
 
 
 
 
 
 
169
 
170
- #### Software
171
 
172
- [More Information Needed]
173
 
174
- ## Citation [optional]
 
 
 
 
 
 
175
 
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
177
 
178
- **BibTeX:**
 
 
 
 
 
 
 
179
 
180
- [More Information Needed]
181
 
182
- **APA:**
 
 
 
 
183
 
184
- [More Information Needed]
 
 
185
 
186
- ## Glossary [optional]
187
 
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
189
 
190
- [More Information Needed]
191
 
192
- ## More Information [optional]
 
193
 
194
- [More Information Needed]
 
 
 
 
 
 
 
195
 
196
- ## Model Card Authors [optional]
197
 
198
- [More Information Needed]
 
199
 
200
- ## Model Card Contact
201
 
202
- [More Information Needed]
 
4
  - unsloth
5
  - trl
6
  - grpo
7
+ license: mit
8
+ datasets:
9
+ - eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1
10
+ language:
11
+ - en
12
+ base_model:
13
+ - Qwen/Qwen2.5-1.5B-Instruct
14
  ---
15
 
16
+ # Qwen2.5-1.5B-Instruct Fine-Tuned on GSM8K with DeepSeek Augmentation
17
 
18
+ ## 🚀 Model Overview
19
 
20
+ This model is a **fine-tuned version of Qwen2.5-1.5B-Instruct**, optimized for **mathematical problem-solving with step-by-step reasoning**. It was trained on the **GSM8K dataset**, incorporating **Chain-of-Thought (CoT) reasoning** using **DeepSeek augmentation**.
21
 
22
+ The model is designed to provide **logical, structured, and interpretable answers**, making it ideal for applications in **education, tutoring, and automated reasoning**.
23
 
24
+ ### 🔹 **Key Features**
25
+ - **Base Model:** `Qwen/Qwen2.5-1.5B-Instruct`
26
+ - **Fine-Tuned On:** `eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`
27
+ - **Optimized for:** **Mathematical problem-solving & step-by-step logical reasoning**
28
+ - **Fine-tuned with:** **LoRA (Low-Rank Adaptation) for efficient memory usage**
29
+ - **Inference-ready:** Available on **🤗 Hugging Face** and **compatible with `llama.cpp`**
30
+ - **Supports GGUF:** Optimized versions for **Q4_K_M, Q8_0, Q5_K_M, and FP16**
31
 
32
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ ## 📂 **Model Details**
35
 
36
+ - **Developed by:** [Your Name or Organization]
37
+ - **Model Type:** Causal Language Model (**Text Generation**)
38
+ - **Languages:** English (`en`)
39
+ - **License:** MIT License
40
+ - **Fine-tuned from:** `Qwen/Qwen2.5-1.5B-Instruct`
41
+ - **Training Library:** `transformers` + `unsloth` + `trl`
42
+ - **Quantization:** GGUF (`Q4_K_M, Q8_0, Q5_K_M, f16`)
43
 
44
+ 🔗 **Hugging Face Repository**:
45
+ 👉 [Fine-tuned Qwen2.5-1.5B-Instruct](https://huggingface.co/your-repo-id)
46
 
47
+ ---
48
 
49
+ ## 🛠 How to Use the Model
50
 
51
+ ### **Using `transformers` in Python**
52
+ You can load and use the model with 🤗 `transformers` as follows:
53
 
54
+ ```python
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+ import torch
57
 
58
+ # Load model and tokenizer
59
+ model_name = "your-repo-id"
60
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
61
+ model = AutoModelForCausalLM.from_pretrained(model_name)
62
 
63
+ # Move model to GPU if available
64
+ device = "cuda" if torch.cuda.is_available() else "cpu"
65
+ model.to(device)
66
 
67
+ # Example inference
68
+ question = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"
69
+ inputs = tokenizer(question, return_tensors="pt").to(device)
70
+ output = model.generate(**inputs, max_length=200)
71
 
72
+ # Decode response
73
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
74
+ ```
75
 
76
+ ---
77
 
78
+ ## 🖥️ Running the Model with `llama.cpp` (Mac/Linux/Windows)
79
 
80
+ The model is **quantized** into GGUF format and can run on Mac **without a GPU** using `llama.cpp`.
81
 
82
+ ### **1️⃣ Install `llama.cpp`**
83
+ ```sh
84
+ brew install llama.cpp
85
+ ```
86
 
87
+ ### **2️⃣ Download the Model**
88
+ ```sh
89
+ mkdir -p ~/llama_models && cd ~/llama_models
90
+ wget https://huggingface.co/your-repo-id/resolve/main/q8_0.gguf
91
+ ```
92
 
93
+ ### **3️⃣ Run the Model**
94
+ ```sh
95
+ llama-cli -m ~/llama_models/q8_0.gguf --interactive
96
+ ```
97
 
98
+ ### **4️⃣ Test with a Prompt**
99
+ ```sh
100
+ llama-cli -m ~/llama_models/q8_0.gguf -p "Explain quantum computing in simple terms."
101
+ ```
102
 
103
+ ---
104
 
105
+ ## 🏋️ **Training Details**
106
 
107
+ ### **📊 Dataset Used**
108
+ The model was fine-tuned on:
109
+ 🔹 [`eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`](https://huggingface.co/datasets/eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1)
110
 
111
+ This dataset contains:
112
+ - **8K training samples**
113
+ - **1K testing samples**
114
+ - Features: `"question"`, `"answer"`, `"cot"` (Chain-of-Thought)
115
 
116
+ ### **⚙️ Training Configuration**
117
+ - **Framework:** `transformers` + `unsloth` + `trl`
118
+ - **Optimization:**
119
+ - **LoRA (Low-Rank Adaptation)** applied to QKV projections
120
+ - **Learning Rate:** `1e-6`
121
+ - **AdamW Optimizer (8-bit)**
122
+ - **Mixed Precision (`bf16` or `fp16`)**
123
+ - **Batch Size:** `8`
124
+ - **Gradient Accumulation Steps:** `1`
125
+ - **Max Sequence Length:** `1024`
126
 
127
+ ---
128
 
129
+ ## 📊 **Model Performance**
130
 
131
+ ### **✅ Training Loss**
132
+ | Step | Training Loss | Reward | KL |
133
+ |------|--------------|--------|------|
134
+ | 1 | 0.0000 | 0.0000 | 0.0000 |
135
+ | 500 | 0.0033 | 0.2617 | 0.0821 |
136
+ | 1000 | 0.0028 | 0.1359 | 0.0696 |
137
+ | 1500 | 0.0062 | 1.3781 | 0.1559 |
138
 
139
+ ### **🧪 Testing & Expected Results**
140
+ The model was evaluated on the **1K test samples** and showed strong accuracy in multi-step problem-solving.
141
 
142
+ Example expected response:
143
+ ```text
144
+ To solve the problem, we first find the clips sold in May:
145
+ Clips in May = 48 / 2 = 24
146
+ Next, we find the total:
147
+ Total Clips = 48 + 24 = 72
148
+ #### Answer: 72
149
+ ```
150
 
151
+ ---
152
 
153
+ ## 🚨 **Bias, Risks, and Limitations**
154
+ ### ⚠️ **Potential Risks**
155
+ - May **hallucinate** incorrect reasoning steps if prompts are unclear.
156
+ - Could struggle with **complex mathematical problems** outside its training data.
157
+ - **Limited generalization** to non-math reasoning tasks.
158
 
159
+ ### 🎯 **Recommendations**
160
+ - If using this model for **critical applications**, verify outputs with human review.
161
+ - For **better performance**, fine-tune on **larger datasets** with real-world numerical reasoning.
162
 
163
+ ---
164
 
165
+ ## 🌍 **Environmental Impact**
166
+ **Estimated Carbon Emissions:**
167
+ - **Hardware Used:** NVIDIA A100 GPU
168
+ - **Training Time:** ~5 hours
169
+ - **Estimated CO2 Emitted:** ~8.2 kg CO2eq (via [ML Impact Calculator](https://mlco2.github.io/impact#compute))
170
 
171
+ ---
172
 
173
+ ## 📖 **Citation**
174
+ If you use this model in your research, please cite it as:
175
 
176
+ ```bibtex
177
+ @misc{your_model_2024,
178
+ title={Fine-Tuned Qwen2.5-1.5B-Instruct on GSM8K with DeepSeek Augmentation},
179
+ author={Your Name},
180
+ year={2024},
181
+ url={https://huggingface.co/your-repo-id}
182
+ }
183
+ ```
184
 
185
+ ---
186
 
187
+ ## 📩 **Model Card Contact**
188
+ For questions, suggestions, or issues, reach out via [Hugging Face Discussions](https://huggingface.co/your-repo-id/discussions).
189
 
190
+ ---
191
 
192
+ 🎉 **Thank you for using this model!** If you find it useful, please ⭐ it on **Hugging Face**! 🚀🔥