--- library_name: transformers tags: - unsloth - trl - grpo license: mit datasets: - eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1 language: - en base_model: - Qwen/Qwen2.5-1.5B-Instruct --- # Qwen2.5-1.5B-Instruct Fine-Tuned on GSM8K with DeepSeek Augmentation ## ๐Ÿš€ Model Overview This model is a **fine-tuned version of Qwen2.5-1.5B-Instruct**, optimized for **mathematical problem-solving with step-by-step reasoning**. It was trained on the **GSM8K dataset**, incorporating **Chain-of-Thought (CoT) reasoning** using **DeepSeek augmentation**. The model is designed to provide **logical, structured, and interpretable answers**, making it ideal for applications in **education, tutoring, and automated reasoning**. ### ๐Ÿ”น **Key Features** - **Base Model:** `Qwen/Qwen2.5-1.5B-Instruct` - **Fine-Tuned On:** `eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1` - **Optimized for:** **Mathematical problem-solving & step-by-step logical reasoning** - **Fine-tuned with:** **LoRA (Low-Rank Adaptation) for efficient memory usage** - **Inference-ready:** Available on **๐Ÿค— Hugging Face** and **compatible with `llama.cpp`** - **Supports GGUF:** Optimized versions for **Q4_K_M, Q8_0, Q5_K_M, and FP16** --- ## ๐Ÿ“‚ **Model Details** - **Developed by:** [Your Name or Organization] - **Model Type:** Causal Language Model (**Text Generation**) - **Languages:** English (`en`) - **License:** MIT License - **Fine-tuned from:** `Qwen/Qwen2.5-1.5B-Instruct` - **Training Library:** `transformers` + `unsloth` + `trl` - **Quantization:** GGUF (`Q4_K_M, Q8_0, Q5_K_M, f16`) ๐Ÿ”— **Hugging Face Repository**: ๐Ÿ‘‰ [Fine-tuned Qwen2.5-1.5B-Instruct](https://huggingface.co/your-repo-id) --- ## ๐Ÿ›  How to Use the Model ### **Using `transformers` in Python** You can load and use the model with ๐Ÿค— `transformers` as follows: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model_name = "your-repo-id" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Move model to GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Example inference question = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?" inputs = tokenizer(question, return_tensors="pt").to(device) output = model.generate(**inputs, max_length=200) # Decode response print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` --- ## ๐Ÿ–ฅ๏ธ Running the Model with `llama.cpp` (Mac/Linux/Windows) The model is **quantized** into GGUF format and can run on Mac **without a GPU** using `llama.cpp`. ### **1๏ธโƒฃ Install `llama.cpp`** ```sh brew install llama.cpp ``` ### **2๏ธโƒฃ Download the Model** ```sh mkdir -p ~/llama_models && cd ~/llama_models wget https://huggingface.co/your-repo-id/resolve/main/q8_0.gguf ``` ### **3๏ธโƒฃ Run the Model** ```sh llama-cli -m ~/llama_models/q8_0.gguf --interactive ``` Or you can use the following ```sh llama-cli -hf eagle0504/qwen-2_5-1_5b-instruct-using-openai-gsm8k-data-enhanced-with-deepseek-v4:Q8_0 ``` ### **4๏ธโƒฃ Test with a Prompt** ```sh llama-cli -m ~/llama_models/q8_0.gguf -p "Explain quantum computing in simple terms." ``` --- ## ๐Ÿ‹๏ธ **Training Details** ### **๐Ÿ“Š Dataset Used** The model was fine-tuned on: ๐Ÿ”น [`eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`](https://huggingface.co/datasets/eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1) This dataset contains: - **8K training samples** - **1K testing samples** - Features: `"question"`, `"answer"`, `"cot"` (Chain-of-Thought) ### **โš™๏ธ Training Configuration** - **Framework:** `transformers` + `unsloth` + `trl` - **Optimization:** - **LoRA (Low-Rank Adaptation)** applied to QKV projections - **Learning Rate:** `1e-6` - **AdamW Optimizer (8-bit)** - **Mixed Precision (`bf16` or `fp16`)** - **Batch Size:** `8` - **Gradient Accumulation Steps:** `1` - **Max Sequence Length:** `1024` --- ## ๐Ÿ“Š **Model Performance** ### **โœ… Training Loss** | Step | Training Loss | Reward | KL | |------|--------------|--------|------| | 1 | 0.0000 | 0.0000 | 0.0000 | | 500 | 0.0033 | 0.2617 | 0.0821 | | 1000 | 0.0028 | 0.1359 | 0.0696 | | 1500 | 0.0062 | 1.3781 | 0.1559 | ### **๐Ÿงช Testing & Expected Results** The model was evaluated on the **1K test samples** and showed strong accuracy in multi-step problem-solving. Example expected response: ```text To solve the problem, we first find the clips sold in May: Clips in May = 48 / 2 = 24 Next, we find the total: Total Clips = 48 + 24 = 72 #### Answer: 72 ``` --- ## ๐Ÿšจ **Bias, Risks, and Limitations** ### โš ๏ธ **Potential Risks** - May **hallucinate** incorrect reasoning steps if prompts are unclear. - Could struggle with **complex mathematical problems** outside its training data. - **Limited generalization** to non-math reasoning tasks. ### ๐ŸŽฏ **Recommendations** - If using this model for **critical applications**, verify outputs with human review. - For **better performance**, fine-tune on **larger datasets** with real-world numerical reasoning. --- ## ๐ŸŒ **Environmental Impact** **Estimated Carbon Emissions:** - **Hardware Used:** NVIDIA A100 GPU - **Training Time:** ~5 hours - **Estimated CO2 Emitted:** ~8.2 kg CO2eq (via [ML Impact Calculator](https://mlco2.github.io/impact#compute)) --- ## ๐Ÿ“– **Citation** If you use this model in your research, please cite it as: ```bibtex @misc{your_model_2024, title={Fine-Tuned Qwen2.5-1.5B-Instruct on GSM8K with DeepSeek Augmentation}, author={Your Name}, year={2024}, url={https://huggingface.co/your-repo-id} } ``` --- ## ๐Ÿ“ฉ **Model Card Contact** For questions, suggestions, or issues, reach out via [Hugging Face Discussions](https://huggingface.co/your-repo-id/discussions). --- ๐ŸŽ‰ **Thank you for using this model!** If you find it useful, please โญ it on **Hugging Face**! ๐Ÿš€๐Ÿ”ฅ