--- library_name: transformers license: apache-2.0 datasets: - HuggingFaceM4/the_cauldron - HuggingFaceM4/Docmatix - lmms-lab/LLaVA-OneVision-Data - lmms-lab/M4-Instruct-Data - HuggingFaceFV/finevideo - MAmmoTH-VL/MAmmoTH-VL-Instruct-12M - lmms-lab/LLaVA-Video-178K - orrzohar/Video-STaR - Mutonix/Vript - TIGER-Lab/VISTA-400K - Enxin/MovieChat-1K_train - ShareGPT4Video/ShareGPT4Video pipeline_tag: image-text-to-text tags: - video-text-to-text - openvino - openvino-export language: - en base_model: HuggingFaceTB/SmolVLM2-2.2B-Instruct --- This model was converted to OpenVINO from [`HuggingFaceTB/SmolVLM2-2.2B-Instruct`](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space. First make sure you have optimum-intel installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import OVModelForVisualCausalLM model_id = "echarlaix/SmolVLM2-2.2B-Instruct-openvino" model = OVModelForVisualCausalLM.from_pretrained(model_id) ```