File size: 972 Bytes
68528f2
b65f5c0
68528f2
 
 
 
b65f5c0
68528f2
 
 
b65f5c0
68528f2
 
b65f5c0
 
68528f2
b65f5c0
68528f2
b65f5c0
 
 
68528f2
b65f5c0
 
 
68528f2
b65f5c0
 
 
68528f2
 
 
 
 
 
5008839
68528f2
b65f5c0
68528f2
 
 
b65f5c0
68528f2
b65f5c0
68528f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

---
language: en
license: mit
datasets:
  - your_dataset_name
tags:
  - text-classification
  - bert
  - query-classification
metrics:
  - accuracy: 0.975925925925926
  - f1: 0.975935077462957
---

# BERT Fine-tuned for Query Classification

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/answerdotai/ModernBERT-base) on a query classification dataset.

## Model description

The model was fine-tuned on queries to classify them into specific categories.

## Training and evaluation data

The model was trained on [describe your dataset here].

## Training procedure

The model was trained with the following hyperparameters:
- Learning rate: 2e-05
- Batch size: 8
- Number of epochs: 5
- Optimizer: AdamW
- Weight decay: 0.01

## Evaluation results

The model achieved the following results on the validation set:
- Accuracy: 0.9759
- F1 Score: 0.9759

## Uses and limitations

[Discuss the intended uses and limitations of your model]