File size: 972 Bytes
68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 5008839 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 b65f5c0 68528f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
language: en
license: mit
datasets:
- your_dataset_name
tags:
- text-classification
- bert
- query-classification
metrics:
- accuracy: 0.975925925925926
- f1: 0.975935077462957
---
# BERT Fine-tuned for Query Classification
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/answerdotai/ModernBERT-base) on a query classification dataset.
## Model description
The model was fine-tuned on queries to classify them into specific categories.
## Training and evaluation data
The model was trained on [describe your dataset here].
## Training procedure
The model was trained with the following hyperparameters:
- Learning rate: 2e-05
- Batch size: 8
- Number of epochs: 5
- Optimizer: AdamW
- Weight decay: 0.01
## Evaluation results
The model achieved the following results on the validation set:
- Accuracy: 0.9759
- F1 Score: 0.9759
## Uses and limitations
[Discuss the intended uses and limitations of your model]
|