ArapCheruiyot commited on
Commit
b956739
·
verified ·
1 Parent(s): c5fc8e3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +29 -112
README.md CHANGED
@@ -59,53 +59,15 @@ This is a fine-tuned version of the Llama-3.1 model specifically optimized for D
59
  - **Framework**: MLX-LM
60
  - **Hardware**: Apple M1 Max (64GB RAM)
61
 
62
- ## Intended Uses
63
 
64
- ### Primary Use Cases
65
-
66
- 1. **Election Security**: Detect and classify disinformation campaigns targeting electoral processes
67
- 2. **Content Moderation**: Identify harmful content that undermines electoral integrity
68
- 3. **Research**: Academic research on disinformation patterns and meta-narratives
69
- 4. **Policy Analysis**: Support policy development for election security measures
70
-
71
- ### Target Applications
72
-
73
- - Social media monitoring platforms
74
- - Election security organizations
75
- - Fact-checking organizations
76
- - Academic research institutions
77
- - Government agencies
78
- - Civil society organizations
79
-
80
- ## Training Data
81
-
82
- The model was trained on the [DISARM Election Watch Dataset](https://huggingface.co/datasets/ArapCheruiyot/disarm-election-watch-dataset), which contains:
83
-
84
- ### Data Sources
85
- - **Telegram**: 3,632 examples (60.3%)
86
- - **X/Twitter**: 2,038 examples (33.9%)
87
- - **TikTok**: 248 examples (4.1%)
88
- - **DISARM**: 101 examples (1.7%)
89
-
90
- ### Task Types
91
- - **DISARM Classification**: 101 examples
92
- - **Content Analysis**: 5,770 examples
93
- - **Narrative Analysis**: 148 examples
94
-
95
- ### Data Split
96
- - **Training**: 4,815 examples (80%)
97
- - **Validation**: 601 examples (10%)
98
- - **Test**: 603 examples (10%)
99
-
100
- ## Usage
101
-
102
- ### With MLX-LM (Fused Model)
103
 
104
  ```python
105
  from mlx_lm import load, generate
106
 
107
  # Load the complete fine-tuned model
108
- model, tokenizer = load("ArapCheruiyot/disarm-ew-llama3-finetuned")
109
 
110
  # Example prompt
111
  prompt = """### Instruction:
@@ -121,34 +83,36 @@ response = generate(model, tokenizer, prompt, max_tokens=256, temp=0.1)
121
  print(response)
122
  ```
123
 
124
- ### With LoRA Adapters
125
 
126
- ```python
127
- from mlx_lm import load, generate
 
128
 
129
- # Load base model with LoRA adapters
130
- model, tokenizer = load("ArapCheruiyot/disarm_ew-llama3",
131
- adapter_path="ArapCheruiyot/disarm-ew-llama3-finetuned")
132
 
133
- # Generate response
134
- response = generate(model, tokenizer, prompt, max_tokens=256, temp=0.1)
135
- print(response)
 
 
 
 
 
 
 
136
  ```
137
 
138
- ### Example Output
139
 
140
  ```json
141
  {
142
  "meta_narrative": "Compromised Election Technology",
143
- "primary_disarm_technique": "T0022.002: Develop Original Conspiracy Theory Narratives",
144
- "confidence_score": 0.95,
145
- "key_indicators": [
146
- "BVAS",
147
- "INEC",
148
- "pre-loaded",
149
- "rigged",
150
- "incumbent"
151
- ],
152
  "platform": "WhatsApp",
153
  "language": "en",
154
  "category": "Undermining Electoral Institutions"
@@ -173,25 +137,6 @@ print(response)
173
  - **Metal GPU**: Accelerated inference
174
  - **Memory Management**: 16GB wired memory optimization
175
 
176
- ## Limitations and Biases
177
-
178
- ### Known Limitations
179
- 1. **Language**: Trained primarily on English content
180
- 2. **Geographic Focus**: Primarily Nigerian election context
181
- 3. **Platform Bias**: Limited to specific social media platforms
182
- 4. **Temporal Context**: Training data from specific election periods
183
-
184
- ### Potential Biases
185
- 1. **Cultural Context**: May not generalize to other cultural contexts
186
- 2. **Platform-Specific**: May not capture platform-specific nuances
187
- 3. **Evolving Tactics**: May not capture new disinformation techniques
188
-
189
- ### Ethical Considerations
190
- 1. **Privacy**: Ensure compliance with data protection regulations
191
- 2. **Transparency**: Use responsibly with clear disclosure of AI involvement
192
- 3. **Bias Mitigation**: Regular evaluation for unintended biases
193
- 4. **Human Oversight**: Always maintain human oversight in critical applications
194
-
195
  ## Model Files
196
 
197
  ### Fused Model (Complete)
@@ -204,43 +149,15 @@ print(response)
204
  - **Format**: safetensors
205
  - **Files**: Final adapters + training checkpoints
206
 
207
- ### Training Checkpoints
208
- - **Frequency**: Every 100 iterations
209
- - **Purpose**: Model evaluation and recovery
210
- - **Format**: safetensors
211
-
212
- ## Citation
213
 
214
- If you use this model, please cite:
215
-
216
- ```bibtex
217
- @misc{disarm_election_watch_2025,
218
- title={DISARM Election Watch: Fine-tuned Llama-3.1 for Election Disinformation Detection},
219
- author={ArapCheruiyot},
220
- year={2024},
221
- url={https://huggingface.co/ArapCheruiyot/disarm-ew-llama3-finetuned}
222
- }
223
- ```
224
-
225
- ## License
226
-
227
- This model is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.
228
-
229
- ## Acknowledgments
230
-
231
- - **DISARM Framework**: For the classification methodology
232
- - **MLX-LM**: For the fine-tuning framework
233
- - **Apple**: For Apple Silicon optimization
234
- - **Hugging Face**: For model hosting and distribution
235
 
236
  ## Contact
237
 
238
  For questions, issues, or collaboration opportunities:
239
  - **Model Repository**: [ArapCheruiyot/disarm-ew-llama3-finetuned](https://huggingface.co/ArapCheruiyot/disarm-ew-llama3-finetuned)
240
  - **Dataset Repository**: [ArapCheruiyot/disarm-election-watch-dataset](https://huggingface.co/datasets/ArapCheruiyot/disarm-election-watch-dataset)
241
-
242
- ## Version History
243
-
244
- - **v1.0.0**: Initial release with 600 training iterations
245
- - **Training Data**: 6,019 examples from multiple platforms
246
- - **Framework**: MLX-LM with Apple Silicon optimization
 
59
  - **Framework**: MLX-LM
60
  - **Hardware**: Apple M1 Max (64GB RAM)
61
 
62
+ ## Quick Start
63
 
64
+ ### Using with MLX-LM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  ```python
67
  from mlx_lm import load, generate
68
 
69
  # Load the complete fine-tuned model
70
+ model, tokenizer = load("models/disarm_ew_llama3_finetuned")
71
 
72
  # Example prompt
73
  prompt = """### Instruction:
 
83
  print(response)
84
  ```
85
 
86
+ ### Using with Ollama
87
 
88
+ ```bash
89
+ # Create Ollama model
90
+ ollama create disarm-ew-llama3-finetuned -f Modelfile
91
 
92
+ # Run the model
93
+ ollama run disarm-ew-llama3-finetuned "Your prompt here"
94
+ ```
95
 
96
+ ### Example Usage
97
+
98
+ ```bash
99
+ ollama run disarm-ew-llama3-finetuned "### Instruction:
100
+ Classify the following content according to DISARM Framework techniques and meta-narratives:
101
+
102
+ ### Input:
103
+ A viral WhatsApp broadcast claims that the BVAS machines have been pre-loaded with votes by INEC in favour of the incumbent party.
104
+
105
+ ### Response:"
106
  ```
107
 
108
+ ### Expected Output
109
 
110
  ```json
111
  {
112
  "meta_narrative": "Compromised Election Technology",
113
+ "primary_disarm_technique": "T0022.001: Develop False Conspiracy Theory Narratives about Electoral Manipulation and Compromise",
114
+ "confidence_score": 0.98,
115
+ "key_indicators": ["BVAS", "pre-loaded", "INEC"],
 
 
 
 
 
 
116
  "platform": "WhatsApp",
117
  "language": "en",
118
  "category": "Undermining Electoral Institutions"
 
137
  - **Metal GPU**: Accelerated inference
138
  - **Memory Management**: 16GB wired memory optimization
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  ## Model Files
141
 
142
  ### Fused Model (Complete)
 
149
  - **Format**: safetensors
150
  - **Files**: Final adapters + training checkpoints
151
 
152
+ ## Local Deployment Benefits
 
 
 
 
 
153
 
154
+ - **Privacy**: Run locally without sending data to external servers
155
+ - **Speed**: Fast inference on local hardware
156
+ - **Customization**: Modify prompts and parameters as needed
157
+ - **Offline**: Works without internet connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
159
  ## Contact
160
 
161
  For questions, issues, or collaboration opportunities:
162
  - **Model Repository**: [ArapCheruiyot/disarm-ew-llama3-finetuned](https://huggingface.co/ArapCheruiyot/disarm-ew-llama3-finetuned)
163
  - **Dataset Repository**: [ArapCheruiyot/disarm-election-watch-dataset](https://huggingface.co/datasets/ArapCheruiyot/disarm-election-watch-dataset)