File size: 1,343 Bytes
83760e3 4688771 83760e3 4688771 83760e3 4688771 83760e3 4688771 83760e3 4688771 83760e3 4688771 83760e3 4688771 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: other
license_name: qwen-research
license_link: LICENSE
language:
- en
tags:
- multimodal
- mlx
library_name: mlx
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-Omni-3B
---
# giangndm/qwen2.5-omni-3b-mlx-8bit
This model [giangndm/qwen2.5-omni-3b-mlx-8bit](https://huggingface.co/giangndm/qwen2.5-omni-3b-mlx-8bit) was
converted to MLX format from [Qwen/Qwen2.5-Omni-3B](https://huggingface.co/Qwen/Qwen2.5-Omni-3B)
using mlx-lm version **0.24.0**.
## Use with mlx (https://github.com/giangndm/mlx-lm-omni)
```bash
uv add mlx-lm-omni
# or
uv add https://github.com/giangndm/mlx-lm-omni.git
```
```python
from mlx_lm_omni import load, generate
import librosa
from io import BytesIO
from urllib.request import urlopen
model, tokenizer = load("giangndm/qwen2.5-omni-3b-mlx-8bit")
audio_path = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac"
audio = librosa.load(BytesIO(urlopen(audio_path).read()), sr=16000)[0]
messages = [
{"role": "system", "content": "You are a speech recognition model."},
{"role": "user", "content": "Transcribe the English audio into text without any punctuation marks.", "audio": audio},
]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
text = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|