--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - devgpt-aimotion/the-stack-v2_PlantUML_filtered metrics: - accuracy model-index: - name: bert_base_code_uml results: - task: name: Masked Language Modeling type: fill-mask dataset: name: devgpt-aimotion/the-stack-v2_PlantUML_filtered type: devgpt-aimotion/the-stack-v2_PlantUML_filtered metrics: - name: Accuracy type: accuracy value: 0.829663160408593 --- # bert_base_code_uml This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the devgpt-aimotion/the-stack-v2_PlantUML_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.8230 - Accuracy: 0.8297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 2.4929 | 7.8493 | 10000 | 2.1514 | 0.5692 | | 0.9263 | 15.6986 | 20000 | 0.9068 | 0.8143 | | 0.8293 | 23.5479 | 30000 | 0.8292 | 0.8286 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1