File size: 2,512 Bytes
5aa0d88 3e2783d 5aa0d88 3e2783d 5aa0d88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: llama4
language:
- en
- fr
- de
- hi
- it
- pt
- es
- th
base_model:
- meta-llama/Llama-Prompt-Guard-2-86M
pipeline_tag: text-classification
tags:
- facebook
- meta
- llama
- llama4
- safety
- gravitee-io
- ai-gateway
---
# Llama-Prompt-Guard-2-86M-onnx
This repository provides a ONNX converted and quantized version of meta-llama/Llama-Prompt-Guard-2-86M
## 🧠 Built With
- Meta LLaMA – Foundation model powering the classifier
- [meta-llama/Llama-Prompt-Guard-2-22M](https://huggingface.co/meta-llama/Llama-Prompt-Guard-2-22M)
- [meta-llama/Llama-Prompt-Guard-2-86M](https://huggingface.co/meta-llama/Llama-Prompt-Guard-2-86M)
- 🤗 Hugging Face Transformers – Model and tokenizer loading
- ONNX – Model export and runtime format
- ONNX Runtime – Efficient inference backend
## 📥 Evaluation Dataset
We use [`jackhhao/jailbreak-classification`](https://huggingface.co/datasets/jackhhao/jailbreak-classification)
for the evaluation (train+test)
## 🧪 Evaluation Results
| Model | Accuracy | Precision | Recall | F1 Score | AUC-ROC |
|----------------------------|----------|-----------|--------|----------|---------|
| Llama-Prompt-Guard-2-22M | 0.9564 | 0.9888 | 0.9249 | 0.9558 | 0.9234 |
| Llama-Prompt-Guard-2-22M-q | 0.9579 | 0.9967 | 0.9204 | 0.9449 | 0.9180 |
| Llama-Prompt-Guard-2-86M | 0.9801 | 0.9984 | 0.9625 | 0.9801 | 0.9519 |
| Llama-Prompt-Guard-2-86M-q | 0.8989 | 1.0000 | 0.8018 | 0.89 | 0.7452 |
## 🤗 Usage
```python
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForSequenceClassification
import numpy as np
# Load model and tokenizer using optimum
model = ORTModelForSequenceClassification.from_pretrained("gravitee-io/Llama-Prompt-Guard-2-86M-onnx", file_name="model.quant.onnx")
tokenizer = AutoTokenizer.from_pretrained("gravitee-io/Llama-Prompt-Guard-2-86M-onnx")
# Tokenize input
text = "Your comment here"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# Run inference
outputs = model(**inputs)
logits = outputs.logits
# Optional: convert to probabilities
probs = 1 / (1 + np.exp(-logits))
print(probs)
```
## 🐙 GitHub Repository:
You can find the full source code, CLI tools, and evaluation scripts in the official [GitHub repository](https://github.com/gravitee-io-labs/Llama-Prompt-Guard-2-onnx). |