--- library_name: transformers license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: flan-t5-base-gen-12-small_dataset results: [] --- [Visualize in Weights & Biases](https://wandb.ai/greatakela/gen_chatbot_models/runs/g7jitsum) # flan-t5-base-gen-12-small_dataset This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1621 - Rouge 1: 7.3814 - Rouge 2: 0.6192 - Rouge L: 6.8531 - Avg Len: 13.0278 - Bertscore Prec: 0.8612 - Bertscore Rec: 0.8542 - Bertscore F1: 0.8573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge 1 | Rouge 2 | Rouge L | Avg Len | Bertscore Prec | Bertscore Rec | Bertscore F1 | |:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:--------------:|:-------------:|:------------:| | 3.8134 | 0.6173 | 200 | 3.4410 | 6.2979 | 0.223 | 5.7832 | 13.5052 | 0.8507 | 0.8498 | 0.8498 | | 3.5423 | 1.2346 | 400 | 3.3112 | 6.0189 | 0.3369 | 5.6265 | 14.6944 | 0.8611 | 0.8514 | 0.8558 | | 3.3863 | 1.8519 | 600 | 3.2457 | 5.8478 | 0.312 | 5.5206 | 14.901 | 0.8649 | 0.8522 | 0.8581 | | 3.2873 | 2.4691 | 800 | 3.2077 | 6.1468 | 0.4176 | 5.7813 | 14.4757 | 0.8643 | 0.8522 | 0.8578 | | 3.2097 | 3.0864 | 1000 | 3.1873 | 6.8407 | 0.5555 | 6.391 | 13.6875 | 0.8591 | 0.8521 | 0.8553 | | 3.1199 | 3.7037 | 1200 | 3.1723 | 6.6644 | 0.3774 | 6.2188 | 15.6545 | 0.8557 | 0.8511 | 0.8531 | | 3.0885 | 4.3210 | 1400 | 3.1635 | 7.0627 | 0.5238 | 6.5367 | 14.4826 | 0.861 | 0.8527 | 0.8565 | | 3.033 | 4.9383 | 1600 | 3.1565 | 7.0399 | 0.5467 | 6.4524 | 14.401 | 0.8596 | 0.8527 | 0.8558 | | 2.9712 | 5.5556 | 1800 | 3.1555 | 7.1467 | 0.5327 | 6.4363 | 14.6406 | 0.8566 | 0.853 | 0.8545 | | 2.9196 | 6.1728 | 2000 | 3.1563 | 7.1535 | 0.4741 | 6.6271 | 14.8073 | 0.8558 | 0.8531 | 0.8542 | | 2.8896 | 6.7901 | 2200 | 3.1531 | 7.1215 | 0.5534 | 6.5025 | 14.408 | 0.8579 | 0.853 | 0.8551 | | 2.8631 | 7.4074 | 2400 | 3.1547 | 7.4895 | 0.7019 | 6.8118 | 14.092 | 0.8581 | 0.8533 | 0.8554 | | 2.8525 | 8.0247 | 2600 | 3.1532 | 7.1931 | 0.6333 | 6.6858 | 13.9201 | 0.8586 | 0.8528 | 0.8553 | | 2.7951 | 8.6420 | 2800 | 3.1546 | 7.2016 | 0.7094 | 6.6671 | 13.4878 | 0.8599 | 0.8534 | 0.8563 | | 2.7996 | 9.2593 | 3000 | 3.1568 | 7.225 | 0.6035 | 6.7029 | 13.724 | 0.8582 | 0.8532 | 0.8554 | | 2.7721 | 9.8765 | 3200 | 3.1563 | 7.0646 | 0.6486 | 6.5622 | 13.125 | 0.8602 | 0.853 | 0.8562 | | 2.759 | 10.4938 | 3400 | 3.1625 | 7.3836 | 0.7279 | 6.9035 | 12.6927 | 0.8613 | 0.8535 | 0.857 | | 2.7459 | 11.1111 | 3600 | 3.1600 | 7.4314 | 0.6359 | 6.8986 | 13.1528 | 0.8605 | 0.8539 | 0.8569 | | 2.7356 | 11.7284 | 3800 | 3.1621 | 7.3814 | 0.6192 | 6.8531 | 13.0278 | 0.8612 | 0.8542 | 0.8573 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1