hblim commited on
Commit
e6924d3
·
verified ·
1 Parent(s): 1973b1c

Update README.md

Browse files

Updated model card

Files changed (1) hide show
  1. README.md +85 -176
README.md CHANGED
@@ -1,199 +1,108 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - hblim/customer-complaints
6
+ language:
7
+ - en
8
+ metrics:
9
+ - accuracy
10
+ base_model:
11
+ - google-bert/bert-base-uncased
12
+ tags:
13
+ - bert
14
+ - transformers
15
+ - customer-complaints
16
+ - text-classification
17
+ - multiclass
18
+ - huggingface
19
+ - fine-tuned
20
+ - wandb
21
  ---
22
 
23
+ # BERT Base (Uncased) Fine-Tuned on Customer Complaint Classification (3 Classes)
24
 
25
+ ## 🧾 Model Description
26
 
27
+ This model is a fine-tuned version of [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) using Hugging Face Transformers on a custom dataset of customer complaints. The task is **multi-class text classification**, where each complaint is categorized into one of **three classes**.
28
 
29
+ The model is intended to support downstream tasks like complaint triage, issue type prediction, or support ticket classification.
30
 
31
+ Training and evaluation were tracked using [Weights & Biases](https://wandb.ai/), and all hyperparameters are reproducible and logged below.
32
 
33
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ ## 🧠 Intended Use
36
 
37
+ - 🏷 Classify customer complaint text into 3 predefined categories
38
+ - 📊 Analyze complaint trends over time
39
+ - 💬 Serve as a backend model for customer service applications
40
 
41
+ ---
42
 
43
+ ## 📚 Dataset
44
 
45
+ - Dataset Name: [hblim/customer-complaints](https://huggingface.co/datasets/hblim/customer-complaints)
46
+ - Dataset Type: Multiclass text classification
47
+ - Classes: billing, product, delivery
48
+ - Preprocessing: Standard BERT tokenization
49
 
50
+ ---
51
 
52
+ ## ⚙️ Training Details
53
+
54
+ - Base Model: `bert-base-uncased`
55
+ - Epochs: **10**
56
+ - Batch Size: **1**
57
+ - Learning Rate: **1e-5**
58
+ - Weight Decay: **0.05**
59
+ - Warmup Ratio: **0.20**
60
+ - LR Scheduler: `linear`
61
+ - Optimizer: `AdamW`
62
+ - Evaluation Strategy: every **100 steps**
63
+ - Logging: every **100 steps**
64
+ - Trainer: Hugging Face `Trainer`
65
+ - Hardware: Single NVIDIA GeForce RTX 3080 GPU
66
 
67
+ ---
68
 
69
+ ## 📈 Metrics
70
+
71
+ Evaluation was tracked using:
72
+ - **Accuracy**
73
+
74
+ To reproduce metrics and training logs, refer to the corresponding W&B run:
75
+ [Weights & Biases Run - `baseline-hf-hub`](https://wandb.ai/notslahify/customer%20complaints%20fine%20tuning/runs/c75ddclr)
76
+
77
+
78
+ | Step | Training Loss | Validation Loss | Accuracy |
79
+ |------|---------------|-----------------|------------|
80
+ | 100 | 1.106100 | 1.040519 | 0.523810 |
81
+ | 200 | 0.944800 | 0.744273 | 0.738095 |
82
+ | 300 | 0.660000 | 0.385309 | 0.900000 |
83
+ | 400 | 0.412400 | 0.273423 | 0.904762 |
84
+ | 500 | 0.220800 | 0.185636 | 0.923810 |
85
+ | 600 | 0.163400 | 0.245850 | 0.919048 |
86
+ | 700 | 0.116100 | 0.180523 | 0.942857 |
87
+ | 800 | 0.097200 | 0.254475 | 0.928571 |
88
+ | 900 | 0.052200 | 0.233583 | 0.942857 |
89
+ | 1000 | 0.050700 | 0.223150 | 0.928571 |
90
+ | 1100 | 0.035100 | 0.271416 | 0.919048 |
91
+ | 1200 | 0.027700 | 0.226478 | 0.933333 |
92
+ | 1300 | 0.009000 | 0.218807 | 0.938095 |
93
+ | 1400 | 0.013600 | 0.246330 | 0.928571 |
94
+ | 1500 | 0.014500 | 0.226987 | 0.933333 |
95
 
96
+ ---
97
 
98
+ ## 🚀 How to Use
99
 
100
+ ```python
101
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
102
 
103
+ model = AutoModelForSequenceClassification.from_pretrained("your-username/baseline-hf-hub")
104
+ tokenizer = AutoTokenizer.from_pretrained("your-username/baseline-hf-hub")
105
 
106
+ inputs = tokenizer("I want to report an issue with my account", return_tensors="pt")
107
+ outputs = model(**inputs)
108
+ predicted_class = outputs.logits.argmax(dim=-1).item()