--- base_model: - Qwen/Qwen2.5-VL-7B-Instruct --- This is the [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) model, converted to OpenVINO, with int4 weights for the language model, int8 weights for the other models. ## Download Model To download the model, run `pip install huggingface-hub[cli]` and then: ``` huggingface-cli download helenai/Qwen2.5-VL-7B-Instruct-ov-int4 --local-dir Qwen2.5-VL-7B-Instruct-ov-int4 ``` ## Run inference with OpenVINO GenAI Use OpenVINO GenAI to run inference on this model. This model works with OpenVINO GenAI 2025.2 and later. - Install OpenVINO GenAI and pillow: ``` pip install --upgrade openvino-genai pillow ``` - Download a test image: `curl -O "https://storage.openvinotoolkit.org/test_data/images/dog.jpg"` - Run inference: ```python import numpy as np import openvino as ov import openvino_genai from PIL import Image # Choose GPU instead of CPU in the line below to run the model on Intel integrated or discrete GPU pipe = openvino_genai.VLMPipeline("Qwen2.5-VL-7B-Instruct-ov-int4", "CPU") image = Image.open("dog.jpg") # optional: resizing to a smaller size (depending on image and prompt) is often useful to speed up inference. image = image.resize((128, 128)) image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.uint8) image_data = ov.Tensor(image_data) prompt = "Can you describe the image?" result = pipe.generate(prompt, image=image_data, max_new_tokens=100) print(result.texts[0]) ``` See [OpenVINO GenAI repository](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#performing-visual-language-text-generation) ## Model export properties Model export command: ``` optimum-cli export openvino -m Qwen/Qwen2.5-VL-7B-Instruct --weight-format int4 Qwen2.5-VL-7B-Instruct-ov-int4 ``` ### Framework versions ``` openvino : 2025.2.0-19140-c01cd93e24d-releases/2025/2 nncf : 2.17.0.dev0+c6296072 optimum_intel : 1.26.0.dev0+0e2ccef optimum : 1.27.0 pytorch : 2.7.0+cpu transformers : 4.51.3 ``` ### LLM export properties ``` all_layers : False awq : False backup_mode : int8_asym compression_format : dequantize gptq : False group_size : 128 ignored_scope : [] lora_correction : False mode : int4_asym ratio : 1.0 scale_estimation : False sensitivity_metric : weight_quantization_error ```