Update README.md
Browse files
README.md
CHANGED
|
@@ -7,7 +7,93 @@ tags: []
|
|
| 7 |
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
|
|
| 7 |
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
| 10 |
+
## Code to create model
|
| 11 |
+
```py
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import MimiConfig, MimiModel, AutoProcessor
|
| 14 |
+
|
| 15 |
+
model_id = 'kyutai/mimi'
|
| 16 |
+
config = MimiConfig.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
intermediate_size=64,
|
| 19 |
+
hidden_size=16,
|
| 20 |
+
num_hidden_layers=2,
|
| 21 |
+
num_key_value_heads=2,
|
| 22 |
+
upsample_groups=16,
|
| 23 |
+
num_filters=8,
|
| 24 |
+
codebook_dim=8,
|
| 25 |
+
vector_quantization_hidden_dimension=8,
|
| 26 |
+
codebook_size=32,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Create model and randomize all weights
|
| 30 |
+
model = MimiModel(config)
|
| 31 |
+
|
| 32 |
+
torch.manual_seed(0) # Set for reproducibility
|
| 33 |
+
for name, param in model.named_parameters():
|
| 34 |
+
param.data = torch.randn_like(param)
|
| 35 |
+
|
| 36 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
## ONNX conversion code
|
| 40 |
+
```py
|
| 41 |
+
import torch
|
| 42 |
+
import torch.nn as nn
|
| 43 |
+
from transformers import MimiModel
|
| 44 |
+
|
| 45 |
+
class MimiEncoder(nn.Module):
|
| 46 |
+
def __init__(self, model):
|
| 47 |
+
super(MimiEncoder, self).__init__()
|
| 48 |
+
self.model = model
|
| 49 |
+
|
| 50 |
+
def forward(self, input_values, padding_mask=None):
|
| 51 |
+
return self.model.encode(input_values, padding_mask=padding_mask).audio_codes
|
| 52 |
+
|
| 53 |
+
class MimiDecoder(nn.Module):
|
| 54 |
+
def __init__(self, model):
|
| 55 |
+
super(MimiDecoder, self).__init__()
|
| 56 |
+
self.model = model
|
| 57 |
+
|
| 58 |
+
def forward(self, audio_codes, padding_mask=None):
|
| 59 |
+
return self.model.decode(audio_codes, padding_mask=padding_mask).audio_values
|
| 60 |
+
|
| 61 |
+
model = MimiModel.from_pretrained("hf-internal-testing/tiny-random-MimiModel")
|
| 62 |
+
encoder = MimiEncoder(model)
|
| 63 |
+
decoder = MimiDecoder(model)
|
| 64 |
+
|
| 65 |
+
dummy_encoder_inputs = torch.randn((5, 1, 82500))
|
| 66 |
+
torch.onnx.export(
|
| 67 |
+
encoder,
|
| 68 |
+
dummy_encoder_inputs,
|
| 69 |
+
"encoder_model.onnx",
|
| 70 |
+
export_params=True,
|
| 71 |
+
opset_version=14,
|
| 72 |
+
do_constant_folding=True,
|
| 73 |
+
input_names=['input_values'],
|
| 74 |
+
output_names=['audio_codes'],
|
| 75 |
+
dynamic_axes={
|
| 76 |
+
'input_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'},
|
| 77 |
+
'audio_codes': {0: 'batch_size', 2: 'codes_length'},
|
| 78 |
+
},
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
dummy_decoder_inputs = torch.randint(8, (4, 32, 91))
|
| 82 |
+
torch.onnx.export(
|
| 83 |
+
decoder,
|
| 84 |
+
dummy_decoder_inputs,
|
| 85 |
+
"decoder_model.onnx",
|
| 86 |
+
export_params=True,
|
| 87 |
+
opset_version=14,
|
| 88 |
+
do_constant_folding=True,
|
| 89 |
+
input_names=['audio_codes'],
|
| 90 |
+
output_names=['audio_values'],
|
| 91 |
+
dynamic_axes={
|
| 92 |
+
'audio_codes': {0: 'batch_size', 2: 'codes_length'},
|
| 93 |
+
'audio_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'},
|
| 94 |
+
},
|
| 95 |
+
)
|
| 96 |
+
```
|
| 97 |
|
| 98 |
## Model Details
|
| 99 |
|