Update README.md
Browse files
README.md
CHANGED
|
@@ -49,13 +49,18 @@ import torch
|
|
| 49 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 50 |
|
| 51 |
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
prompt = [
|
| 53 |
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 54 |
{"role": "user", "content": "What's Deep Learning?"},
|
| 55 |
]
|
| 56 |
-
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 58 |
-
|
| 59 |
inputs = tokenizer.apply_chat_template(
|
| 60 |
prompt,
|
| 61 |
tokenize=True,
|
|
@@ -64,13 +69,6 @@ inputs = tokenizer.apply_chat_template(
|
|
| 64 |
return_dict=True,
|
| 65 |
).to("cuda")
|
| 66 |
|
| 67 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 68 |
-
model_id,
|
| 69 |
-
torch_dtype=torch.float16,
|
| 70 |
-
low_cpu_mem_usage=True,
|
| 71 |
-
device_map="auto",
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 75 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
| 76 |
```
|
|
@@ -92,13 +90,18 @@ from auto_gptq import AutoGPTQForCausalLM
|
|
| 92 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 93 |
|
| 94 |
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
prompt = [
|
| 96 |
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 97 |
{"role": "user", "content": "What's Deep Learning?"},
|
| 98 |
]
|
| 99 |
-
|
| 100 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 101 |
-
|
| 102 |
inputs = tokenizer.apply_chat_template(
|
| 103 |
prompt,
|
| 104 |
tokenize=True,
|
|
@@ -107,13 +110,6 @@ inputs = tokenizer.apply_chat_template(
|
|
| 107 |
return_dict=True,
|
| 108 |
).to("cuda")
|
| 109 |
|
| 110 |
-
model = AutoGPTQForCausalLM.from_pretrained(
|
| 111 |
-
model_id,
|
| 112 |
-
torch_dtype=torch.float16,
|
| 113 |
-
low_cpu_mem_usage=True,
|
| 114 |
-
device_map="auto",
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 118 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
| 119 |
```
|
|
|
|
| 49 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 50 |
|
| 51 |
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4"
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 54 |
+
model_id,
|
| 55 |
+
torch_dtype=torch.float16,
|
| 56 |
+
low_cpu_mem_usage=True,
|
| 57 |
+
device_map="auto",
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
prompt = [
|
| 61 |
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 62 |
{"role": "user", "content": "What's Deep Learning?"},
|
| 63 |
]
|
|
|
|
|
|
|
|
|
|
| 64 |
inputs = tokenizer.apply_chat_template(
|
| 65 |
prompt,
|
| 66 |
tokenize=True,
|
|
|
|
| 69 |
return_dict=True,
|
| 70 |
).to("cuda")
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 73 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
| 74 |
```
|
|
|
|
| 90 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 91 |
|
| 92 |
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4"
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 94 |
+
model = AutoGPTQForCausalLM.from_pretrained(
|
| 95 |
+
model_id,
|
| 96 |
+
torch_dtype=torch.float16,
|
| 97 |
+
low_cpu_mem_usage=True,
|
| 98 |
+
device_map="auto",
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
prompt = [
|
| 102 |
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
| 103 |
{"role": "user", "content": "What's Deep Learning?"},
|
| 104 |
]
|
|
|
|
|
|
|
|
|
|
| 105 |
inputs = tokenizer.apply_chat_template(
|
| 106 |
prompt,
|
| 107 |
tokenize=True,
|
|
|
|
| 110 |
return_dict=True,
|
| 111 |
).to("cuda")
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
|
| 114 |
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
| 115 |
```
|