update example
Browse files
README.md
CHANGED
|
@@ -226,25 +226,28 @@ This is a simple example of how to use **Granite-3B-Code-Instruct** model.
|
|
| 226 |
import torch
|
| 227 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 228 |
device = "cuda" # or "cpu"
|
| 229 |
-
model_path = "
|
| 230 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 231 |
# drop device_map if running on CPU
|
| 232 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
| 233 |
model.eval()
|
| 234 |
# change input text as desired
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
| 236 |
# tokenize the text
|
| 237 |
-
input_tokens = tokenizer(
|
| 238 |
# transfer tokenized inputs to the device
|
| 239 |
for i in input_tokens:
|
| 240 |
input_tokens[i] = input_tokens[i].to(device)
|
| 241 |
# generate output tokens
|
| 242 |
-
output = model.generate(**input_tokens)
|
| 243 |
# decode output tokens into text
|
| 244 |
output = tokenizer.batch_decode(output)
|
| 245 |
# loop over the batch to print, in this example the batch size is 1
|
| 246 |
for i in output:
|
| 247 |
-
print(
|
| 248 |
```
|
| 249 |
|
| 250 |
<!-- TO DO: Check this part -->
|
|
|
|
| 226 |
import torch
|
| 227 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 228 |
device = "cuda" # or "cpu"
|
| 229 |
+
model_path = "granite-8b-code-instruct"
|
| 230 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 231 |
# drop device_map if running on CPU
|
| 232 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
| 233 |
model.eval()
|
| 234 |
# change input text as desired
|
| 235 |
+
chat = [
|
| 236 |
+
{ "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
|
| 237 |
+
]
|
| 238 |
+
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 239 |
# tokenize the text
|
| 240 |
+
input_tokens = tokenizer(chat, return_tensors="pt")
|
| 241 |
# transfer tokenized inputs to the device
|
| 242 |
for i in input_tokens:
|
| 243 |
input_tokens[i] = input_tokens[i].to(device)
|
| 244 |
# generate output tokens
|
| 245 |
+
output = model.generate(**input_tokens, max_new_tokens=100)
|
| 246 |
# decode output tokens into text
|
| 247 |
output = tokenizer.batch_decode(output)
|
| 248 |
# loop over the batch to print, in this example the batch size is 1
|
| 249 |
for i in output:
|
| 250 |
+
print(i)
|
| 251 |
```
|
| 252 |
|
| 253 |
<!-- TO DO: Check this part -->
|