Upload 3 files
Browse files
modeling_colgranitevision/config.json
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"adapter_path": "",
|
3 |
+
"architectures": [
|
4 |
+
"ColGraniteVision"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModelForVision2Seq": "modeling_colgranitevision.ColGraniteVision",
|
8 |
+
"AutoProcessor": "processing_colgranitevision.ColGraniteVisionProcessor"
|
9 |
+
},
|
10 |
+
"base_model": "ibm-granite/granite-vision-3.1-2b-preview",
|
11 |
+
"emb_dim_doc": 128,
|
12 |
+
"emb_dim_query": 128,
|
13 |
+
"image_grid_pinpoints": [
|
14 |
+
[
|
15 |
+
384,
|
16 |
+
768
|
17 |
+
],
|
18 |
+
[
|
19 |
+
384,
|
20 |
+
1152
|
21 |
+
],
|
22 |
+
[
|
23 |
+
384,
|
24 |
+
1536
|
25 |
+
],
|
26 |
+
[
|
27 |
+
384,
|
28 |
+
1920
|
29 |
+
],
|
30 |
+
[
|
31 |
+
384,
|
32 |
+
2304
|
33 |
+
],
|
34 |
+
[
|
35 |
+
384,
|
36 |
+
2688
|
37 |
+
],
|
38 |
+
[
|
39 |
+
384,
|
40 |
+
3072
|
41 |
+
],
|
42 |
+
[
|
43 |
+
384,
|
44 |
+
3456
|
45 |
+
],
|
46 |
+
[
|
47 |
+
384,
|
48 |
+
3840
|
49 |
+
],
|
50 |
+
[
|
51 |
+
768,
|
52 |
+
384
|
53 |
+
],
|
54 |
+
[
|
55 |
+
768,
|
56 |
+
768
|
57 |
+
],
|
58 |
+
[
|
59 |
+
768,
|
60 |
+
1152
|
61 |
+
],
|
62 |
+
[
|
63 |
+
768,
|
64 |
+
1536
|
65 |
+
],
|
66 |
+
[
|
67 |
+
768,
|
68 |
+
1920
|
69 |
+
],
|
70 |
+
[
|
71 |
+
1152,
|
72 |
+
384
|
73 |
+
],
|
74 |
+
[
|
75 |
+
1152,
|
76 |
+
768
|
77 |
+
],
|
78 |
+
[
|
79 |
+
1152,
|
80 |
+
1152
|
81 |
+
],
|
82 |
+
[
|
83 |
+
1536,
|
84 |
+
384
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1536,
|
88 |
+
768
|
89 |
+
],
|
90 |
+
[
|
91 |
+
1920,
|
92 |
+
384
|
93 |
+
],
|
94 |
+
[
|
95 |
+
1920,
|
96 |
+
768
|
97 |
+
],
|
98 |
+
[
|
99 |
+
2304,
|
100 |
+
384
|
101 |
+
],
|
102 |
+
[
|
103 |
+
2688,
|
104 |
+
384
|
105 |
+
],
|
106 |
+
[
|
107 |
+
3072,
|
108 |
+
384
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3456,
|
112 |
+
384
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3840,
|
116 |
+
384
|
117 |
+
]
|
118 |
+
],
|
119 |
+
"image_seq_length": 576,
|
120 |
+
"image_token_index": 49155,
|
121 |
+
"model_type": "llava_next",
|
122 |
+
"multimodal_projector_bias": true,
|
123 |
+
"projector_hidden_act": "gelu",
|
124 |
+
"text_config": {
|
125 |
+
"architectures": [
|
126 |
+
"GraniteForCausalLM"
|
127 |
+
],
|
128 |
+
"attention_dropout": 0.1,
|
129 |
+
"attention_multiplier": 0.015625,
|
130 |
+
"bos_token_id": 0,
|
131 |
+
"embedding_multiplier": 12.0,
|
132 |
+
"eos_token_id": 0,
|
133 |
+
"hidden_size": 2048,
|
134 |
+
"intermediate_size": 8192,
|
135 |
+
"logits_scaling": 8.0,
|
136 |
+
"max_position_embeddings": 16384,
|
137 |
+
"model_type": "granite",
|
138 |
+
"num_hidden_layers": 40,
|
139 |
+
"num_key_value_heads": 8,
|
140 |
+
"pad_token_id": 0,
|
141 |
+
"residual_multiplier": 0.22,
|
142 |
+
"rms_norm_eps": 1e-05,
|
143 |
+
"rope_theta": 300000,
|
144 |
+
"tie_word_embeddings": true,
|
145 |
+
"torch_dtype": "bfloat16",
|
146 |
+
"vocab_size": 49156
|
147 |
+
},
|
148 |
+
"torch_dtype": "float32",
|
149 |
+
"transformers_version": "4.50.0.dev0",
|
150 |
+
"use_image_newline_parameter": true,
|
151 |
+
"vision_config": {
|
152 |
+
"hidden_size": 1152,
|
153 |
+
"image_size": 384,
|
154 |
+
"intermediate_size": 4304,
|
155 |
+
"model_type": "siglip_vision_model",
|
156 |
+
"num_attention_heads": 16,
|
157 |
+
"num_hidden_layers": 27,
|
158 |
+
"patch_size": 14
|
159 |
+
},
|
160 |
+
"vision_feature_layer": [
|
161 |
+
-24,
|
162 |
+
-20,
|
163 |
+
-12,
|
164 |
+
-1
|
165 |
+
],
|
166 |
+
"vision_feature_select_strategy": "full"
|
167 |
+
}
|
modeling_colgranitevision/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddf363fafb46eb2bda156c288b4023345220f243dfa40cdf8dea7e4e3e2f6ab0
|
3 |
+
size 113333568
|
modeling_colgranitevision/modeling_colgranitevision.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import ClassVar, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers import LlavaNextConfig, \
|
6 |
+
LlavaNextPreTrainedModel
|
7 |
+
|
8 |
+
from custom_llava_next import LlavaNextWithCustomPacking as LlavaNextForConditionalGeneration
|
9 |
+
|
10 |
+
|
11 |
+
# from transformers.models.paligemma.modeling_paligemma import (
|
12 |
+
# PaliGemmaConfig,
|
13 |
+
# PaliGemmaForConditionalGeneration,
|
14 |
+
# PaliGemmaPreTrainedModel,
|
15 |
+
# )
|
16 |
+
|
17 |
+
|
18 |
+
class ColGraniteVision(LlavaNextPreTrainedModel):
|
19 |
+
"""
|
20 |
+
ColGraniteVision model implementation.
|
21 |
+
"""
|
22 |
+
|
23 |
+
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
24 |
+
|
25 |
+
def __init__(self, config: LlavaNextConfig):
|
26 |
+
super().__init__(config=config)
|
27 |
+
|
28 |
+
model = LlavaNextForConditionalGeneration(config=config)
|
29 |
+
if model.language_model._tied_weights_keys is not None:
|
30 |
+
self._tied_weights_keys = [f"model.language_model.{k}" for k in model.language_model._tied_weights_keys]
|
31 |
+
self.model = model
|
32 |
+
|
33 |
+
# TODO: Wait for ColPali2 to create a ColPaliConfig to allow specifying the embedding dimension.
|
34 |
+
# We could do it now but it would break all the models trying to load the model from the checkpoint.
|
35 |
+
self.dim = 128
|
36 |
+
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
|
37 |
+
|
38 |
+
self.post_init()
|
39 |
+
|
40 |
+
def forward(self, *args, **kwargs) -> torch.Tensor:
|
41 |
+
# Delete output_hidden_states from kwargs
|
42 |
+
kwargs.pop("output_hidden_states", None)
|
43 |
+
if "pixel_values" in kwargs:
|
44 |
+
kwargs["pixel_values"] = kwargs["pixel_values"].to(dtype=self.dtype)
|
45 |
+
|
46 |
+
outputs = self.model(*args, output_hidden_states=True, **kwargs) # (batch_size, sequence_length, hidden_size)
|
47 |
+
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
|
48 |
+
|
49 |
+
attention_mask = kwargs["attention_mask"]
|
50 |
+
if "pixel_values" in kwargs:
|
51 |
+
input_ids = kwargs['input_ids']
|
52 |
+
image_mask = (input_ids == self.config.image_token_index)
|
53 |
+
# inputs_embeds = last_hidden_states.masked_scatter(image_mask)
|
54 |
+
N, M = image_mask.shape
|
55 |
+
# Create an index matrix: each row is 0, 1, ..., M-1
|
56 |
+
idx = torch.arange(M, device=image_mask.device).expand(N, M)
|
57 |
+
# Replace False positions with -1 so they are ignored by topk (since all valid indices are >=0)
|
58 |
+
masked_idx = torch.where(image_mask, idx, torch.tensor(-1, device=image_mask.device))
|
59 |
+
topk_values, _ = torch.topk(masked_idx, k=729, dim=1)
|
60 |
+
last_k_indices, _ = torch.sort(topk_values, dim=1)
|
61 |
+
last_k_indices_exp = last_k_indices.unsqueeze(-1).expand(-1, -1, last_hidden_states.size(-1))
|
62 |
+
last_hidden_states = torch.gather(last_hidden_states, 1, last_k_indices_exp)
|
63 |
+
attention_mask = torch.gather(attention_mask, 1, last_k_indices)
|
64 |
+
|
65 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
66 |
+
|
67 |
+
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
68 |
+
|
69 |
+
# L2 normalization
|
70 |
+
proj = proj / (proj.norm(dim=-1, keepdim=True) + 1e-8)
|
71 |
+
|
72 |
+
# proj = proj * kwargs["attention_mask"].unsqueeze(-1) # (batch_size, sequence_length, dim)
|
73 |
+
proj = proj * attention_mask # (batch_size, sequence_length, dim)
|
74 |
+
|
75 |
+
return proj
|
76 |
+
|
77 |
+
def get_input_embeddings(self):
|
78 |
+
return self.model.language_model.get_input_embeddings()
|
79 |
+
|
80 |
+
def set_input_embeddings(self, value):
|
81 |
+
self.model.language_model.set_input_embeddings(value)
|
82 |
+
|
83 |
+
def get_output_embeddings(self):
|
84 |
+
return self.model.language_model.get_output_embeddings()
|
85 |
+
|
86 |
+
def set_output_embeddings(self, new_embeddings):
|
87 |
+
self.model.language_model.set_output_embeddings(new_embeddings)
|
88 |
+
|
89 |
+
def set_decoder(self, decoder):
|
90 |
+
self.model.language_model.set_decoder(decoder)
|
91 |
+
|
92 |
+
def get_decoder(self):
|
93 |
+
return self.model.language_model.get_decoder()
|
94 |
+
|
95 |
+
def tie_weights(self):
|
96 |
+
return self.model.language_model.tie_weights()
|
97 |
+
|
98 |
+
def resize_token_embeddings(
|
99 |
+
self,
|
100 |
+
new_num_tokens: Optional[int] = None,
|
101 |
+
pad_to_multiple_of=None,
|
102 |
+
) -> nn.Embedding:
|
103 |
+
model_embeds = self.model.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
104 |
+
|
105 |
+
# Update vocab size
|
106 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
107 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
108 |
+
self.model.vocab_size = model_embeds.num_embeddings
|
109 |
+
|
110 |
+
return model_embeds
|
111 |
+
|
112 |
+
@property
|
113 |
+
def patch_size(self) -> int:
|
114 |
+
return self.model.vision_tower.config.patch_size
|