Adirazgold commited on
Commit
6a78102
·
verified ·
1 Parent(s): b2b95f4

Upload 16 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 49155,
3
+ "<|end_of_role|>": 49153,
4
+ "<|start_of_role|>": 49152,
5
+ "<|tool_call|>": 49154
6
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{%- if tools %}\n {{- '<|start_of_role|>available_tools<|end_of_role|>\n' }}\n {%- for tool in tools %}\n {{- tool | tojson(indent=4) }}\n {%- if not loop.last %}\n {{- '\n\n' }}\n {%- endif %}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in messages if message['role'] == 'system'%}{% else %}<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n{% endfor %}{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n {{- '<|system|>\n' + message['content'][0]['text'] + '\n' }}\n {%- elif message['role'] == 'user' %}<|user|>\n {# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + '\n' }}{% endfor %}\n{%- elif message['role'] == 'assistant' %}\n {{- '<|assistant|>\n' + message['content'][0]['text'] + '<|end_of_text|>' }}\n {%- elif message['role'] == 'assistant_tool_call' %}\n {{- '<|start_of_role|>assistant<|end_of_role|><|tool_call|>' + message['content'][0]['text'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'tool_response' %}\n {{- '<|start_of_role|>tool_response<|end_of_role|>' + message['content'][0]['text'] + '<|end_of_text|>\n' }}\n {%- endif %}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|assistant|>\n' }}\n {%- endif %}\n{%- endfor %}"
3
+ }
config.json ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ibm-granite/granite-vision-3.1-2b-preview",
3
+ "auto_map":
4
+ {
5
+ "AutoModel": "modeling_colgranitevision.ColGraniteVisionModel",
6
+ "AutoProcessor" : "processing_colgranitevision.ColGraniteVisionProcessor"
7
+
8
+ },
9
+ "architectures": [
10
+ "ColGraniteVision"
11
+ ],
12
+ "base_model": null,
13
+ "emb_dim_doc": 128,
14
+ "emb_dim_query": 128,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 384,
18
+ 768
19
+ ],
20
+ [
21
+ 384,
22
+ 1152
23
+ ],
24
+ [
25
+ 384,
26
+ 1536
27
+ ],
28
+ [
29
+ 384,
30
+ 1920
31
+ ],
32
+ [
33
+ 384,
34
+ 2304
35
+ ],
36
+ [
37
+ 384,
38
+ 2688
39
+ ],
40
+ [
41
+ 384,
42
+ 3072
43
+ ],
44
+ [
45
+ 384,
46
+ 3456
47
+ ],
48
+ [
49
+ 384,
50
+ 3840
51
+ ],
52
+ [
53
+ 768,
54
+ 384
55
+ ],
56
+ [
57
+ 768,
58
+ 768
59
+ ],
60
+ [
61
+ 768,
62
+ 1152
63
+ ],
64
+ [
65
+ 768,
66
+ 1536
67
+ ],
68
+ [
69
+ 768,
70
+ 1920
71
+ ],
72
+ [
73
+ 1152,
74
+ 384
75
+ ],
76
+ [
77
+ 1152,
78
+ 768
79
+ ],
80
+ [
81
+ 1152,
82
+ 1152
83
+ ],
84
+ [
85
+ 1536,
86
+ 384
87
+ ],
88
+ [
89
+ 1536,
90
+ 768
91
+ ],
92
+ [
93
+ 1920,
94
+ 384
95
+ ],
96
+ [
97
+ 1920,
98
+ 768
99
+ ],
100
+ [
101
+ 2304,
102
+ 384
103
+ ],
104
+ [
105
+ 2688,
106
+ 384
107
+ ],
108
+ [
109
+ 3072,
110
+ 384
111
+ ],
112
+ [
113
+ 3456,
114
+ 384
115
+ ],
116
+ [
117
+ 3840,
118
+ 384
119
+ ]
120
+ ],
121
+ "image_seq_length": 576,
122
+ "image_token_index": 49155,
123
+ "model_type": "colgranitevision",
124
+ "multimodal_projector_bias": true,
125
+ "projector_hidden_act": "gelu",
126
+ "text_config": {
127
+ "architectures": [
128
+ "GraniteForCausalLM"
129
+ ],
130
+ "attention_dropout": 0.1,
131
+ "attention_multiplier": 0.015625,
132
+ "bos_token_id": 0,
133
+ "embedding_multiplier": 12.0,
134
+ "eos_token_id": 0,
135
+ "hidden_size": 2048,
136
+ "intermediate_size": 8192,
137
+ "logits_scaling": 8.0,
138
+ "max_position_embeddings": 16384,
139
+ "model_type": "granite",
140
+ "num_hidden_layers": 40,
141
+ "num_key_value_heads": 8,
142
+ "pad_token_id": 0,
143
+ "residual_multiplier": 0.22,
144
+ "rms_norm_eps": 1e-05,
145
+ "rope_theta": 300000,
146
+ "tie_word_embeddings": true,
147
+ "torch_dtype": "bfloat16",
148
+ "vocab_size": 49156
149
+ },
150
+ "tie_word_embeddings": true,
151
+ "torch_dtype": "float32",
152
+ "transformers_version": "4.50.0.dev0",
153
+ "use_image_newline_parameter": true,
154
+ "vision_config": {
155
+ "hidden_act": "gelu_pytorch_tanh",
156
+ "hidden_size": 1152,
157
+ "image_size": 384,
158
+ "intermediate_size": 4304,
159
+ "layer_norm_eps": 1e-06,
160
+ "model_type": "siglip_vision_model",
161
+ "num_attention_heads": 16,
162
+ "num_hidden_layers": 27,
163
+ "patch_size": 14
164
+ },
165
+ "vision_feature_layer": [
166
+ -24,
167
+ -20,
168
+ -12,
169
+ -1
170
+ ],
171
+ "vision_feature_select_strategy": "full"
172
+ }
custom_llava_next.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.llava_next.modeling_llava_next import LlavaNextForConditionalGeneration
2
+ import torch
3
+ from transformers.models.llava_next.modeling_llava_next import unpad_image, get_anyres_image_grid_shape
4
+ import numpy as np
5
+
6
+ class LlavaNextWithCustomPacking(LlavaNextForConditionalGeneration):
7
+ def pack_image_features(
8
+ self,
9
+ image_features,
10
+ image_sizes,
11
+ vision_feature_select_strategy,
12
+ image_newline=None,
13
+ base_image_feature_location="last",
14
+ ):
15
+ """
16
+ Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
17
+
18
+ Args:
19
+ image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
20
+ List of image feature tensor, each contains all the visual feature of all patches.
21
+ image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
22
+ Actual image size of each images (H, W).
23
+ vision_feature_select_strategy (`str`)
24
+ The feature selection strategy used to select the vision feature from the vision backbone.
25
+ image_newline (`torch.Tensor` of shape `(embed_dim)`)
26
+ New line embedding vector.
27
+ Returns:
28
+ image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
29
+ feature_lens (`List[int]`)
30
+ token length of each image in image_features
31
+ """
32
+
33
+
34
+ new_image_features = []
35
+ feature_lens = []
36
+ for image_idx, image_feature in enumerate(image_features):
37
+ if image_feature.shape[0] > 1:
38
+ base_image_feature = image_feature[0]
39
+ image_feature = image_feature[1:]
40
+ height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
41
+
42
+ num_patch_height, num_patch_width = get_anyres_image_grid_shape(
43
+ image_sizes[image_idx],
44
+ self.config.image_grid_pinpoints,
45
+ self.config.vision_config.image_size,
46
+ )
47
+
48
+ if (
49
+ np.prod(image_feature.shape) % (num_patch_height * num_patch_width * height * width) != 0
50
+ and vision_feature_select_strategy == "default"
51
+ ):
52
+ logger.warning_once(
53
+ "Image feature shape does not line up with the provided patch size. "
54
+ "You may be using the `default` vision_feature_select_strategy with a"
55
+ " visual encoder that does not have CLS."
56
+ )
57
+
58
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
59
+ image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
60
+ image_feature = image_feature.flatten(1, 2).flatten(2, 3)
61
+ image_feature = unpad_image(image_feature, image_sizes[image_idx])
62
+ if image_newline is not None:
63
+ image_feature = torch.cat(
64
+ (
65
+ image_feature,
66
+ image_newline[:, None, None]
67
+ .expand(*image_feature.shape[:-1], 1)
68
+ .to(image_feature.device, image_feature.dtype),
69
+ ),
70
+ dim=-1,
71
+ )
72
+ image_feature = image_feature.flatten(1, 2).transpose(0, 1)
73
+ if base_image_feature_location == "last":
74
+ image_feature = torch.cat((image_feature, base_image_feature), dim=0)
75
+ else:
76
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
77
+
78
+ else:
79
+ image_feature = image_feature[0]
80
+ if image_newline is not None:
81
+ image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
82
+ new_image_features.append(image_feature)
83
+ feature_lens.append(image_feature.size(0))
84
+ image_features = torch.cat(new_image_features, dim=0)
85
+ feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
86
+ return image_features, feature_lens
87
+
88
+
89
+
90
+ def main():
91
+ import torch
92
+ from transformers import AutoConfig
93
+
94
+ # Load config and model
95
+ model_id = "ibm-granite/granite-vision-3.1-2b-preview"
96
+ config = AutoConfig.from_pretrained(model_id)
97
+ model = LlavaNextWithCustomPacking.from_pretrained(model_id, config=config)
98
+
99
+ # Dummy image features for 2 images (1 base + 3x3 patch grid flattened)
100
+ B = 2 # batch size
101
+ num_views = 3
102
+ num_patches = 729
103
+ embed_dim = model.config.text_config.hidden_size
104
+ image_features = [
105
+ torch.randn(num_views, num_patches, embed_dim) for _ in range(B)
106
+ ]
107
+ image_sizes = torch.tensor([[384, 384], [384, 384]]) # H, W for each image
108
+
109
+ # Call overridden pack_image_features
110
+ packed_feats, lengths = model.pack_image_features(
111
+ image_features=image_features,
112
+ image_sizes=image_sizes,
113
+ vision_feature_select_strategy="default",
114
+ image_newline=model.image_newline,
115
+ base_image_feature_location="last",
116
+ )
117
+
118
+ print("Packed features shape:", packed_feats.shape)
119
+ print("Feature lengths:", lengths)
120
+
121
+ if __name__ == "__main__":
122
+ main()
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8a694db663b30616ff06812d60256bb474c52051df2003faaec47c42b9a556
3
+ size 4955415688
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9df92d92a0d79465e4ee5eb57a51ee1630b159dc5833e26af9ca7bc9b3788d24
3
+ size 4999979448
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ebe0fe87507de69b86074af24513756fbcc205e83ccb2ee7bbe9238a751f29
3
+ size 1947355456
model.safetensors.index.json ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 11902636800
4
+ },
5
+ "weight_map": {
6
+ "custom_text_proj.bias": "model-00003-of-00003.safetensors",
7
+ "custom_text_proj.weight": "model-00003-of-00003.safetensors",
8
+ "model.image_newline": "model-00001-of-00003.safetensors",
9
+ "model.language_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
10
+ "model.language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
11
+ "model.language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
13
+ "model.language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
15
+ "model.language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
18
+ "model.language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
20
+ "model.language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
24
+ "model.language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
29
+ "model.language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
31
+ "model.language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
33
+ "model.language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
36
+ "model.language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
37
+ "model.language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
38
+ "model.language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
40
+ "model.language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
42
+ "model.language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
43
+ "model.language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
44
+ "model.language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
45
+ "model.language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
46
+ "model.language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
47
+ "model.language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
49
+ "model.language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
51
+ "model.language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "model.language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
58
+ "model.language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
60
+ "model.language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
65
+ "model.language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
69
+ "model.language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
72
+ "model.language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "model.language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
78
+ "model.language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
83
+ "model.language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
85
+ "model.language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
87
+ "model.language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
90
+ "model.language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
92
+ "model.language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
96
+ "model.language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
101
+ "model.language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
105
+ "model.language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
110
+ "model.language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
112
+ "model.language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
114
+ "model.language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
118
+ "model.language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
119
+ "model.language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
121
+ "model.language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
123
+ "model.language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
126
+ "model.language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
127
+ "model.language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
128
+ "model.language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
130
+ "model.language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
132
+ "model.language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
135
+ "model.language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
137
+ "model.language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
139
+ "model.language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
141
+ "model.language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
144
+ "model.language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
145
+ "model.language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
146
+ "model.language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
148
+ "model.language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
150
+ "model.language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
155
+ "model.language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
156
+ "model.language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
157
+ "model.language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
159
+ "model.language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
162
+ "model.language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
164
+ "model.language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
166
+ "model.language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
167
+ "model.language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
168
+ "model.language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
173
+ "model.language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
177
+ "model.language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
179
+ "model.language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
182
+ "model.language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
184
+ "model.language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
186
+ "model.language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
188
+ "model.language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
189
+ "model.language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
190
+ "model.language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
191
+ "model.language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
193
+ "model.language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
195
+ "model.language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
196
+ "model.language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
198
+ "model.language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
199
+ "model.language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00003.safetensors",
200
+ "model.language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
201
+ "model.language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
202
+ "model.language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
203
+ "model.language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
204
+ "model.language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
205
+ "model.language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
206
+ "model.language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
207
+ "model.language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
208
+ "model.language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00003.safetensors",
209
+ "model.language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
210
+ "model.language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
211
+ "model.language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
212
+ "model.language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
213
+ "model.language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
214
+ "model.language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
215
+ "model.language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
216
+ "model.language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
217
+ "model.language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
218
+ "model.language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
220
+ "model.language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
222
+ "model.language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
225
+ "model.language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00003.safetensors",
227
+ "model.language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
228
+ "model.language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
229
+ "model.language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
230
+ "model.language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
231
+ "model.language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
232
+ "model.language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
233
+ "model.language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
234
+ "model.language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
235
+ "model.language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00003.safetensors",
236
+ "model.language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
237
+ "model.language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
238
+ "model.language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
239
+ "model.language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
240
+ "model.language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
241
+ "model.language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
242
+ "model.language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
243
+ "model.language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
244
+ "model.language_model.model.layers.32.input_layernorm.weight": "model-00003-of-00003.safetensors",
245
+ "model.language_model.model.layers.32.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
246
+ "model.language_model.model.layers.32.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
247
+ "model.language_model.model.layers.32.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
248
+ "model.language_model.model.layers.32.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
249
+ "model.language_model.model.layers.32.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
250
+ "model.language_model.model.layers.32.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
251
+ "model.language_model.model.layers.32.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
252
+ "model.language_model.model.layers.32.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
253
+ "model.language_model.model.layers.33.input_layernorm.weight": "model-00003-of-00003.safetensors",
254
+ "model.language_model.model.layers.33.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
255
+ "model.language_model.model.layers.33.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
256
+ "model.language_model.model.layers.33.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
257
+ "model.language_model.model.layers.33.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
258
+ "model.language_model.model.layers.33.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
259
+ "model.language_model.model.layers.33.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
260
+ "model.language_model.model.layers.33.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
261
+ "model.language_model.model.layers.33.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
262
+ "model.language_model.model.layers.34.input_layernorm.weight": "model-00003-of-00003.safetensors",
263
+ "model.language_model.model.layers.34.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
264
+ "model.language_model.model.layers.34.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
265
+ "model.language_model.model.layers.34.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
266
+ "model.language_model.model.layers.34.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
267
+ "model.language_model.model.layers.34.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
268
+ "model.language_model.model.layers.34.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
269
+ "model.language_model.model.layers.34.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
270
+ "model.language_model.model.layers.34.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
271
+ "model.language_model.model.layers.35.input_layernorm.weight": "model-00003-of-00003.safetensors",
272
+ "model.language_model.model.layers.35.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
273
+ "model.language_model.model.layers.35.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
274
+ "model.language_model.model.layers.35.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
275
+ "model.language_model.model.layers.35.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
276
+ "model.language_model.model.layers.35.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
277
+ "model.language_model.model.layers.35.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
278
+ "model.language_model.model.layers.35.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
279
+ "model.language_model.model.layers.35.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
280
+ "model.language_model.model.layers.36.input_layernorm.weight": "model-00003-of-00003.safetensors",
281
+ "model.language_model.model.layers.36.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
282
+ "model.language_model.model.layers.36.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
283
+ "model.language_model.model.layers.36.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
284
+ "model.language_model.model.layers.36.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
285
+ "model.language_model.model.layers.36.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
286
+ "model.language_model.model.layers.36.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
287
+ "model.language_model.model.layers.36.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
288
+ "model.language_model.model.layers.36.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
289
+ "model.language_model.model.layers.37.input_layernorm.weight": "model-00003-of-00003.safetensors",
290
+ "model.language_model.model.layers.37.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
291
+ "model.language_model.model.layers.37.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
292
+ "model.language_model.model.layers.37.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
293
+ "model.language_model.model.layers.37.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
294
+ "model.language_model.model.layers.37.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
295
+ "model.language_model.model.layers.37.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
296
+ "model.language_model.model.layers.37.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
297
+ "model.language_model.model.layers.37.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
298
+ "model.language_model.model.layers.38.input_layernorm.weight": "model-00003-of-00003.safetensors",
299
+ "model.language_model.model.layers.38.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
300
+ "model.language_model.model.layers.38.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
301
+ "model.language_model.model.layers.38.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
302
+ "model.language_model.model.layers.38.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
303
+ "model.language_model.model.layers.38.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
304
+ "model.language_model.model.layers.38.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
305
+ "model.language_model.model.layers.38.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
306
+ "model.language_model.model.layers.38.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
307
+ "model.language_model.model.layers.39.input_layernorm.weight": "model-00003-of-00003.safetensors",
308
+ "model.language_model.model.layers.39.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
309
+ "model.language_model.model.layers.39.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
310
+ "model.language_model.model.layers.39.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
311
+ "model.language_model.model.layers.39.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
312
+ "model.language_model.model.layers.39.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
313
+ "model.language_model.model.layers.39.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
314
+ "model.language_model.model.layers.39.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
315
+ "model.language_model.model.layers.39.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
316
+ "model.language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
317
+ "model.language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
318
+ "model.language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
319
+ "model.language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
320
+ "model.language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
321
+ "model.language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
322
+ "model.language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
323
+ "model.language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
324
+ "model.language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
325
+ "model.language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
326
+ "model.language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
327
+ "model.language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
328
+ "model.language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
329
+ "model.language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
330
+ "model.language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
331
+ "model.language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
332
+ "model.language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
333
+ "model.language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
334
+ "model.language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
335
+ "model.language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
336
+ "model.language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
337
+ "model.language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
338
+ "model.language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
339
+ "model.language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
340
+ "model.language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
341
+ "model.language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
342
+ "model.language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
343
+ "model.language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
344
+ "model.language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
345
+ "model.language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
346
+ "model.language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
347
+ "model.language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
348
+ "model.language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
349
+ "model.language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
350
+ "model.language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
351
+ "model.language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
352
+ "model.language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
353
+ "model.language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
354
+ "model.language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
355
+ "model.language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
356
+ "model.language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
357
+ "model.language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
358
+ "model.language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
359
+ "model.language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
360
+ "model.language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
361
+ "model.language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
362
+ "model.language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
363
+ "model.language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
364
+ "model.language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
365
+ "model.language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
366
+ "model.language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
367
+ "model.language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
368
+ "model.language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
369
+ "model.language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
370
+ "model.language_model.model.norm.weight": "model-00003-of-00003.safetensors",
371
+ "model.multi_modal_projector.linear_1.bias": "model-00001-of-00003.safetensors",
372
+ "model.multi_modal_projector.linear_1.weight": "model-00001-of-00003.safetensors",
373
+ "model.multi_modal_projector.linear_2.bias": "model-00001-of-00003.safetensors",
374
+ "model.multi_modal_projector.linear_2.weight": "model-00001-of-00003.safetensors",
375
+ "model.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
376
+ "model.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
377
+ "model.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00003.safetensors",
378
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00003.safetensors",
379
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00003.safetensors",
380
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00003.safetensors",
381
+ "model.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00003.safetensors",
382
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
383
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
384
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
385
+ "model.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
386
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
387
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
388
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
389
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
390
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
391
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
392
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
393
+ "model.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
394
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00003.safetensors",
395
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00003.safetensors",
396
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00003.safetensors",
397
+ "model.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00003.safetensors",
398
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
399
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
400
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
401
+ "model.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
402
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
403
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
404
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
405
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
406
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
407
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
408
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
409
+ "model.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
410
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00003.safetensors",
411
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00003.safetensors",
412
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00003.safetensors",
413
+ "model.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00003.safetensors",
414
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
415
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
416
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
417
+ "model.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
418
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
419
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
420
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
421
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
422
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
423
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
424
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
425
+ "model.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
426
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00003.safetensors",
427
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00003.safetensors",
428
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00003.safetensors",
429
+ "model.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00003.safetensors",
430
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
431
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
432
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
433
+ "model.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
434
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
435
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
436
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
437
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
438
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
439
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
440
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
441
+ "model.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
442
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00003.safetensors",
443
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00003.safetensors",
444
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00003.safetensors",
445
+ "model.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00003.safetensors",
446
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
447
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
448
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
449
+ "model.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
450
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
451
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
452
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
453
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
454
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
455
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
456
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
457
+ "model.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
458
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00003.safetensors",
459
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00003.safetensors",
460
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00003.safetensors",
461
+ "model.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00003.safetensors",
462
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
463
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
464
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
465
+ "model.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
466
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
467
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
468
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
469
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
470
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
471
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
472
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
473
+ "model.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
474
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00003.safetensors",
475
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00003.safetensors",
476
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00003.safetensors",
477
+ "model.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00003.safetensors",
478
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
479
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
480
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
481
+ "model.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
482
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
483
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
484
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
485
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
486
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
487
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
488
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
489
+ "model.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
490
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00003.safetensors",
491
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00003.safetensors",
492
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00003.safetensors",
493
+ "model.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00003.safetensors",
494
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
495
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
496
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
497
+ "model.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
498
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
499
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
500
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
501
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
502
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
503
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
504
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
505
+ "model.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
506
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00003.safetensors",
507
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00003.safetensors",
508
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00003.safetensors",
509
+ "model.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00003.safetensors",
510
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
511
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
512
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
513
+ "model.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
514
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
515
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
516
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
517
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
518
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
519
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
520
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
521
+ "model.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
522
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00003.safetensors",
523
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00003.safetensors",
524
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00003.safetensors",
525
+ "model.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00003.safetensors",
526
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
527
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
528
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
529
+ "model.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
530
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
531
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
532
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
533
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
534
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
535
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
536
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
537
+ "model.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
538
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00003.safetensors",
539
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00003.safetensors",
540
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00003.safetensors",
541
+ "model.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00003.safetensors",
542
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
543
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
544
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
545
+ "model.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
546
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
547
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
548
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
549
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
550
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
551
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
552
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
553
+ "model.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
554
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00003.safetensors",
555
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00003.safetensors",
556
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00003.safetensors",
557
+ "model.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00003.safetensors",
558
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
559
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
560
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
561
+ "model.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
562
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
563
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
564
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
565
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
566
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
567
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
568
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
569
+ "model.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
570
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00003.safetensors",
571
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00003.safetensors",
572
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00003.safetensors",
573
+ "model.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00003.safetensors",
574
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
575
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
576
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
577
+ "model.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
578
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
579
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
580
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
581
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
582
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
583
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
584
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
585
+ "model.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
586
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00003.safetensors",
587
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00003.safetensors",
588
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00003.safetensors",
589
+ "model.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00003.safetensors",
590
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
591
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
592
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
593
+ "model.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
594
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
595
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
596
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
597
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
598
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
599
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
600
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
601
+ "model.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
602
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00003.safetensors",
603
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00003.safetensors",
604
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00003.safetensors",
605
+ "model.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00003.safetensors",
606
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
607
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
608
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
609
+ "model.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
610
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
611
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
612
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
613
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
614
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
615
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
616
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
617
+ "model.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
618
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00003.safetensors",
619
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00003.safetensors",
620
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00003.safetensors",
621
+ "model.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00003.safetensors",
622
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
623
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
624
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
625
+ "model.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
626
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
627
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
628
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
629
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
630
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
631
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
632
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
633
+ "model.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
634
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00003.safetensors",
635
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00003.safetensors",
636
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00003.safetensors",
637
+ "model.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00003.safetensors",
638
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
639
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
640
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
641
+ "model.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
642
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
643
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
644
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
645
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
646
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
647
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
648
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
649
+ "model.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
650
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00003.safetensors",
651
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00003.safetensors",
652
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00003.safetensors",
653
+ "model.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00003.safetensors",
654
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
655
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
656
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
657
+ "model.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
658
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
659
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
660
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
661
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
662
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
663
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
664
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
665
+ "model.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
666
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00003.safetensors",
667
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00003.safetensors",
668
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00003.safetensors",
669
+ "model.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00003.safetensors",
670
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
671
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
672
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
673
+ "model.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
674
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
675
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
676
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
677
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
678
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
679
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
680
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
681
+ "model.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
682
+ "model.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00003.safetensors",
683
+ "model.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00003.safetensors",
684
+ "model.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00003.safetensors",
685
+ "model.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00003.safetensors",
686
+ "model.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
687
+ "model.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
688
+ "model.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
689
+ "model.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
690
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
691
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
692
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
693
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
694
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
695
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
696
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
697
+ "model.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
698
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00003.safetensors",
699
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00003.safetensors",
700
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00003.safetensors",
701
+ "model.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00003.safetensors",
702
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
703
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
704
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
705
+ "model.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
706
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
707
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
708
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
709
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
710
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
711
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
712
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
713
+ "model.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
714
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00003.safetensors",
715
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00003.safetensors",
716
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00003.safetensors",
717
+ "model.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00003.safetensors",
718
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
719
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
720
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
721
+ "model.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
722
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
723
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
724
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
725
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
726
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
727
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
728
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
729
+ "model.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
730
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00003.safetensors",
731
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00003.safetensors",
732
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00003.safetensors",
733
+ "model.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00003.safetensors",
734
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
735
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
736
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
737
+ "model.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
738
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
739
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
740
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
741
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
742
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
743
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
744
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
745
+ "model.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
746
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00003.safetensors",
747
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00003.safetensors",
748
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00003.safetensors",
749
+ "model.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00003.safetensors",
750
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
751
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
752
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
753
+ "model.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
754
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
755
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
756
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
757
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
758
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
759
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
760
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
761
+ "model.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
762
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00003.safetensors",
763
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00003.safetensors",
764
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00003.safetensors",
765
+ "model.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00003.safetensors",
766
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
767
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
768
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
769
+ "model.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
770
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
771
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
772
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
773
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
774
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
775
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
776
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
777
+ "model.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
778
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00003.safetensors",
779
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00003.safetensors",
780
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00003.safetensors",
781
+ "model.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00003.safetensors",
782
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
783
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
784
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
785
+ "model.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
786
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
787
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
788
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
789
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
790
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
791
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
792
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
793
+ "model.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
794
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00003.safetensors",
795
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00003.safetensors",
796
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00003.safetensors",
797
+ "model.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00003.safetensors",
798
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
799
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
800
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
801
+ "model.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
802
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
803
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
804
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
805
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
806
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
807
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
808
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
809
+ "model.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
810
+ "model.vision_tower.vision_model.head.attention.in_proj_bias": "model-00001-of-00003.safetensors",
811
+ "model.vision_tower.vision_model.head.attention.in_proj_weight": "model-00001-of-00003.safetensors",
812
+ "model.vision_tower.vision_model.head.attention.out_proj.bias": "model-00001-of-00003.safetensors",
813
+ "model.vision_tower.vision_model.head.attention.out_proj.weight": "model-00001-of-00003.safetensors",
814
+ "model.vision_tower.vision_model.head.layernorm.bias": "model-00001-of-00003.safetensors",
815
+ "model.vision_tower.vision_model.head.layernorm.weight": "model-00001-of-00003.safetensors",
816
+ "model.vision_tower.vision_model.head.mlp.fc1.bias": "model-00001-of-00003.safetensors",
817
+ "model.vision_tower.vision_model.head.mlp.fc1.weight": "model-00001-of-00003.safetensors",
818
+ "model.vision_tower.vision_model.head.mlp.fc2.bias": "model-00001-of-00003.safetensors",
819
+ "model.vision_tower.vision_model.head.mlp.fc2.weight": "model-00001-of-00003.safetensors",
820
+ "model.vision_tower.vision_model.head.probe": "model-00001-of-00003.safetensors",
821
+ "model.vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00003.safetensors",
822
+ "model.vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00003.safetensors"
823
+ }
824
+ }
modeling_colgranitevision.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import ClassVar, Optional
2
+
3
+ import torch
4
+ from torch import nn
5
+ from transformers import LlavaNextConfig, \
6
+ LlavaNextPreTrainedModel
7
+
8
+ from custom_llava_next import LlavaNextWithCustomPacking as LlavaNextForConditionalGeneration
9
+ from colgranitevision_config import ColGraniteVisionConfig
10
+
11
+ # from transformers.models.paligemma.modeling_paligemma import (
12
+ # PaliGemmaConfig,
13
+ # PaliGemmaForConditionalGeneration,
14
+ # PaliGemmaPreTrainedModel,
15
+ # )
16
+
17
+
18
+ class ColGraniteVision(LlavaNextPreTrainedModel):
19
+ """
20
+ ColGraniteVision model implementation.
21
+ """
22
+
23
+ main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
24
+ config_class = ColGraniteVisionConfig
25
+
26
+ def __init__(self, config: ColGraniteVisionConfig):
27
+ super().__init__(config=config)
28
+
29
+ model = LlavaNextForConditionalGeneration(config=config)
30
+ if model.language_model._tied_weights_keys is not None:
31
+ self._tied_weights_keys = [f"model.language_model.{k}" for k in model.language_model._tied_weights_keys]
32
+ self.model = model
33
+
34
+ # TODO: Wait for ColPali2 to create a ColPaliConfig to allow specifying the embedding dimension.
35
+ # We could do it now but it would break all the models trying to load the model from the checkpoint.
36
+ self.dim = 128
37
+ self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
38
+
39
+ self.post_init()
40
+
41
+ def forward(self, *args, **kwargs) -> torch.Tensor:
42
+ # Delete output_hidden_states from kwargs
43
+ kwargs.pop("output_hidden_states", None)
44
+ if "pixel_values" in kwargs:
45
+ kwargs["pixel_values"] = kwargs["pixel_values"].to(dtype=self.dtype)
46
+
47
+ outputs = self.model(*args, output_hidden_states=True, **kwargs) # (batch_size, sequence_length, hidden_size)
48
+ last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
49
+
50
+ attention_mask = kwargs["attention_mask"]
51
+ if "pixel_values" in kwargs:
52
+ input_ids = kwargs['input_ids']
53
+ image_mask = (input_ids == self.config.image_token_index)
54
+ # inputs_embeds = last_hidden_states.masked_scatter(image_mask)
55
+ N, M = image_mask.shape
56
+ # Create an index matrix: each row is 0, 1, ..., M-1
57
+ idx = torch.arange(M, device=image_mask.device).expand(N, M)
58
+ # Replace False positions with -1 so they are ignored by topk (since all valid indices are >=0)
59
+ masked_idx = torch.where(image_mask, idx, torch.tensor(-1, device=image_mask.device))
60
+ topk_values, _ = torch.topk(masked_idx, k=729, dim=1)
61
+ last_k_indices, _ = torch.sort(topk_values, dim=1)
62
+ last_k_indices_exp = last_k_indices.unsqueeze(-1).expand(-1, -1, last_hidden_states.size(-1))
63
+ last_hidden_states = torch.gather(last_hidden_states, 1, last_k_indices_exp)
64
+ attention_mask = torch.gather(attention_mask, 1, last_k_indices)
65
+
66
+ attention_mask = attention_mask.unsqueeze(-1)
67
+
68
+ proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
69
+
70
+ # L2 normalization
71
+ proj = proj / (proj.norm(dim=-1, keepdim=True) + 1e-8)
72
+
73
+ # proj = proj * kwargs["attention_mask"].unsqueeze(-1) # (batch_size, sequence_length, dim)
74
+ proj = proj * attention_mask # (batch_size, sequence_length, dim)
75
+
76
+ return proj
77
+
78
+ def get_input_embeddings(self):
79
+ return self.model.language_model.get_input_embeddings()
80
+
81
+ def set_input_embeddings(self, value):
82
+ self.model.language_model.set_input_embeddings(value)
83
+
84
+ def get_output_embeddings(self):
85
+ return self.model.language_model.get_output_embeddings()
86
+
87
+ def set_output_embeddings(self, new_embeddings):
88
+ self.model.language_model.set_output_embeddings(new_embeddings)
89
+
90
+ def set_decoder(self, decoder):
91
+ self.model.language_model.set_decoder(decoder)
92
+
93
+ def get_decoder(self):
94
+ return self.model.language_model.get_decoder()
95
+
96
+ def tie_weights(self):
97
+ return self.model.language_model.tie_weights()
98
+
99
+ def resize_token_embeddings(
100
+ self,
101
+ new_num_tokens: Optional[int] = None,
102
+ pad_to_multiple_of=None,
103
+ ) -> nn.Embedding:
104
+ model_embeds = self.model.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
105
+
106
+ # Update vocab size
107
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
108
+ self.config.vocab_size = model_embeds.num_embeddings
109
+ self.model.vocab_size = model_embeds.num_embeddings
110
+
111
+ return model_embeds
112
+
113
+ @property
114
+ def patch_size(self) -> int:
115
+ return self.model.vision_tower.config.patch_size
preprocessor_config.json ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 384,
4
+ "width": 384
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": null,
8
+ "do_normalize": true,
9
+ "do_pad": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_grid_pinpoints": [
13
+ [
14
+ 384,
15
+ 768
16
+ ],
17
+ [
18
+ 384,
19
+ 1152
20
+ ],
21
+ [
22
+ 384,
23
+ 1536
24
+ ],
25
+ [
26
+ 384,
27
+ 1920
28
+ ],
29
+ [
30
+ 384,
31
+ 2304
32
+ ],
33
+ [
34
+ 384,
35
+ 2688
36
+ ],
37
+ [
38
+ 384,
39
+ 3072
40
+ ],
41
+ [
42
+ 384,
43
+ 3456
44
+ ],
45
+ [
46
+ 384,
47
+ 3840
48
+ ],
49
+ [
50
+ 768,
51
+ 384
52
+ ],
53
+ [
54
+ 768,
55
+ 768
56
+ ],
57
+ [
58
+ 768,
59
+ 1152
60
+ ],
61
+ [
62
+ 768,
63
+ 1536
64
+ ],
65
+ [
66
+ 768,
67
+ 1920
68
+ ],
69
+ [
70
+ 1152,
71
+ 384
72
+ ],
73
+ [
74
+ 1152,
75
+ 768
76
+ ],
77
+ [
78
+ 1152,
79
+ 1152
80
+ ],
81
+ [
82
+ 1536,
83
+ 384
84
+ ],
85
+ [
86
+ 1536,
87
+ 768
88
+ ],
89
+ [
90
+ 1920,
91
+ 384
92
+ ],
93
+ [
94
+ 1920,
95
+ 768
96
+ ],
97
+ [
98
+ 2304,
99
+ 384
100
+ ],
101
+ [
102
+ 2688,
103
+ 384
104
+ ],
105
+ [
106
+ 3072,
107
+ 384
108
+ ],
109
+ [
110
+ 3456,
111
+ 384
112
+ ],
113
+ [
114
+ 3840,
115
+ 384
116
+ ]
117
+ ],
118
+ "image_mean": [
119
+ 0.5,
120
+ 0.5,
121
+ 0.5
122
+ ],
123
+ "image_processor_type": "LlavaNextImageProcessor",
124
+ "image_std": [
125
+ 0.5,
126
+ 0.5,
127
+ 0.5
128
+ ],
129
+ "processor_class": "ColGraniteVisionProcessor",
130
+ "resample": 3,
131
+ "rescale_factor": 0.00392156862745098,
132
+ "size": {
133
+ "height": 384,
134
+ "width": 384
135
+ }
136
+ }
processing_colgranitevision.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import ClassVar, List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ from PIL import Image, ImageOps
6
+ from transformers import BatchFeature, LlavaNextProcessor
7
+
8
+
9
+ def round_by_factor(number: float, factor: int) -> int:
10
+ """Returns the closest integer to 'number' that is divisible by 'factor'."""
11
+ return round(number / factor) * factor
12
+
13
+
14
+ def ceil_by_factor(number: float, factor: int) -> int:
15
+ """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
16
+ return math.ceil(number / factor) * factor
17
+
18
+
19
+ def floor_by_factor(number: float, factor: int) -> int:
20
+ """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
21
+ return math.floor(number / factor) * factor
22
+
23
+
24
+ class ColGraniteVisionProcessor(LlavaNextProcessor):
25
+ """
26
+ Processor for ColPali.
27
+ """
28
+
29
+ visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
30
+ system_message: ClassVar[
31
+ str] = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
32
+ query_prefix: ClassVar[str] = "Query: "
33
+ query_start: ClassVar[str] = "<|user|>\n"
34
+
35
+ def __init__(self, *args, **kwargs):
36
+ super().__init__(*args, **kwargs)
37
+ self.factor = 14
38
+ self.min_size = 384
39
+ self.max_size = 384 * 2
40
+ self.suffix_len = 10
41
+ self.patch_size = 14
42
+
43
+ @property
44
+ def query_augmentation_token(self) -> str:
45
+ """
46
+ Return the query augmentation token.
47
+ Query augmentation buffers are used as reasoning buffers during inference.
48
+ """
49
+ return self.tokenizer.pad_token
50
+
51
+ @staticmethod
52
+ def smart_resize_helper(
53
+ width: int,
54
+ height: int,
55
+ factor: int,
56
+ min_size: int,
57
+ max_size: int
58
+ ) -> Tuple[int, int]:
59
+ """
60
+ Returns the resized image dimensions such that:
61
+ 1. The smaller dimension is set to 'min_size'.
62
+ 2. The larger dimension is scaled proportionally to maintain aspect ratio.
63
+ 3. If the larger dimension exceeds 'max_size', it is clipped to 'max_size',
64
+ and the smaller dimension is adjusted accordingly to maintain aspect ratio.
65
+ 4. Both dimensions are divisible by 'factor'.
66
+ """
67
+
68
+ # Determine scale factor based on min_size
69
+ if height < width:
70
+ scale_factor = min_size / height
71
+ else:
72
+ scale_factor = min_size / width
73
+
74
+ new_width = round(width * scale_factor)
75
+ new_height = round(height * scale_factor)
76
+
77
+ # If the longer dimension exceeds max_size, adjust accordingly
78
+ if max(new_width, new_height) > max_size:
79
+ clip_factor = max_size / max(new_width, new_height)
80
+ new_width = round(new_width * clip_factor)
81
+ new_height = round(new_height * clip_factor)
82
+
83
+ # Ensure dimensions are divisible by factor
84
+ # new_width = round_by_factor(new_width, factor)
85
+ # new_height = round_by_factor(new_height, factor)
86
+
87
+ return new_width, new_height
88
+
89
+ @staticmethod
90
+ def pad_image_center(image: Image.Image,
91
+ target_width: int,
92
+ target_height: int,
93
+ fill_color=(0, 0, 0)) -> Image.Image:
94
+ """
95
+ Pads the given image to be centered within the target dimensions.
96
+
97
+ :param image: PIL Image to be padded.
98
+ :param target_width: The desired width after padding.
99
+ :param target_height: The desired height after padding.
100
+ :param fill_color: Background color (default is black).
101
+ :return: Padded image with centered content.
102
+ """
103
+
104
+ # Get original image size
105
+ img_width, img_height = image.size
106
+
107
+ # Compute padding values
108
+ pad_left = (target_width - img_width) // 2
109
+ pad_top = (target_height - img_height) // 2
110
+ pad_right = target_width - img_width - pad_left
111
+ pad_bottom = target_height - img_height - pad_top
112
+
113
+ # Apply padding
114
+ padded_image = ImageOps.expand(image, (pad_left, pad_top, pad_right, pad_bottom), fill_color).convert("RGB")
115
+
116
+ return padded_image
117
+
118
+ def smart_resize(self, image: Image.Image) -> Image.Image:
119
+ """
120
+ Resize and convert the image to the required format.
121
+ """
122
+ image_size = image.size
123
+ resized_height, resized_width = self.smart_resize_helper(
124
+ width=image_size[0],
125
+ height=image_size[1],
126
+ factor=self.factor,
127
+ min_size=self.min_size,
128
+ max_size=self.max_size
129
+ )
130
+ return image.convert("RGB").resize((resized_width, resized_height))
131
+
132
+ def smart_resize_and_pad(self, image: Image.Image) -> Image.Image:
133
+ """
134
+ Resize and pad the image to the required format.
135
+ """
136
+ return self.resize_and_pad_centered(
137
+ image=image,
138
+ factor=self.factor,
139
+ min_size=self.min_size,
140
+ max_size=self.max_size,
141
+ fill_color=0
142
+ )
143
+
144
+ def resize_and_pad_centered(self,
145
+ image: Image.Image,
146
+ factor: int,
147
+ min_size: int,
148
+ max_size: int,
149
+ fill_color=0
150
+ ) -> Image.Image:
151
+ """
152
+ Resizes and pads an image such that:
153
+ - The short side is set to `min_size`.
154
+ - The long side is scaled proportionally but clipped to `max_size`.
155
+ - The image is centered within the final padded area.
156
+
157
+ :param image: PIL Image
158
+ :param factor: Factor to make dimensions divisible by
159
+ :param min_size: Minimum size for the short side
160
+ :param max_size: Maximum allowed size for the long side
161
+ :param fill_color: Background padding color (default black)
162
+ :return: Resized and padded image
163
+ """
164
+
165
+ # Get original size
166
+ width, height = image.size
167
+
168
+ if min_size == -1 or max_size == -1:
169
+ return image.convert("RGB")
170
+
171
+ # Determine scale factor based on the short side (min_size)
172
+ if width < height:
173
+ scale_factor = min_size / width
174
+ target_width = min_size
175
+ max_scale_factor = min(max_size / height, scale_factor)
176
+ target_height = round(height * max_scale_factor)
177
+ else:
178
+ scale_factor = min_size / height
179
+ target_height = min_size
180
+ max_scale_factor = min(max_size / width, scale_factor)
181
+ target_width = round(width * max_scale_factor)
182
+
183
+ # Ensure the longer side does not exceed max_size
184
+ # if max(target_width, target_height) > max_size:
185
+ # clip_factor = max_size / max(target_width, target_height)
186
+ # target_width = round(target_width * clip_factor)
187
+ # target_height = round(target_height * clip_factor)
188
+
189
+ # Ensure dimensions are divisible by factor
190
+ # target_width = round_by_factor(target_width, factor)
191
+ # target_height = round_by_factor(target_height, factor)
192
+
193
+ # Resize the image
194
+ resized_image = image.resize((target_width, target_height), Image.LANCZOS)
195
+
196
+ # Determine final padded dimensions (aligned to short side)
197
+ if width < height:
198
+ final_width, final_height = min_size, max_size
199
+ else:
200
+ final_width, final_height = max_size, min_size
201
+
202
+ # Compute padding to center the image
203
+ pad_left = (final_width - target_width) // 2
204
+ pad_top = (final_height - target_height) // 2
205
+ pad_right = final_width - target_width - pad_left
206
+ pad_bottom = final_height - target_height - pad_top
207
+
208
+ # Apply centered padding
209
+ # final_image = ImageOps.expand(resized_image, (pad_left, pad_top, pad_right, pad_bottom), fill_color).convert("RGB")
210
+ final_image = resized_image.convert("RGB")
211
+
212
+ return final_image
213
+
214
+ def format_data(self, question, image):
215
+ return [
216
+ {
217
+ "role": "system",
218
+ "content": [{"type": "text", "text": self.system_message}],
219
+ },
220
+ {
221
+ "role": "user",
222
+ "content": [
223
+ {
224
+ "type": "image",
225
+ "image": image,
226
+ },
227
+ {
228
+ "type": "text",
229
+ "text": question,
230
+ },
231
+ ],
232
+ }
233
+ ]
234
+
235
+ def format_data_wo_role(self, question, image=None):
236
+ return [
237
+ {
238
+ "role": "user",
239
+ "content": [
240
+ {
241
+ "type": "image",
242
+ "image": image,
243
+ },
244
+ {
245
+ "type": "text",
246
+ "text": question,
247
+ },
248
+ ],
249
+ }
250
+ ]
251
+
252
+ def process_images(
253
+ self,
254
+ images: List[Image.Image],
255
+ ) -> BatchFeature:
256
+ """
257
+ Process images for ColPali.
258
+ """
259
+ # texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
260
+ texts_doc = [self.visual_prompt_prefix for _ in images]
261
+ images = [self.smart_resize_and_pad(image) for image in images]
262
+
263
+ batch_doc = self(
264
+ text=texts_doc,
265
+ images=images,
266
+ return_tensors="pt",
267
+ padding="longest",
268
+ )
269
+ return batch_doc
270
+
271
+ def process_queries(self, queries, max_length=2048, suffix=None):
272
+ if suffix is None:
273
+ suffix = self.query_augmentation_token * self.suffix_len
274
+
275
+ processed = []
276
+ for q in queries:
277
+ q = self.query_start + self.query_prefix + q
278
+ # truncate before it eats actual query content
279
+ if len(q) + len(suffix) > max_length:
280
+ q = q[: max_length - len(suffix) - 1]
281
+ q += suffix + "\n"
282
+ processed.append(q)
283
+
284
+ return self(
285
+ text=processed,
286
+ images=None,
287
+ return_tensors="pt",
288
+ padding="longest",
289
+ truncation=True,
290
+ max_length=max_length,
291
+ )
292
+
293
+ def score(
294
+ self,
295
+ qs: List[torch.Tensor],
296
+ ps: List[torch.Tensor],
297
+ device: Optional[Union[str, torch.device]] = None,
298
+ **kwargs,
299
+ ) -> torch.Tensor:
300
+ """
301
+ Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
302
+ """
303
+ return self.score_multi_vector(qs, ps, device=device, **kwargs)
304
+
305
+ def get_n_patches(
306
+ self,
307
+ image_size: Tuple[int, int],
308
+ patch_size: int,
309
+ ) -> Tuple[int, int]:
310
+ n_patches_x = self.image_processor.size["width"] // patch_size
311
+ n_patches_y = self.image_processor.size["height"] // patch_size
312
+
313
+ return n_patches_x, n_patches_y
314
+
315
+ def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor:
316
+ return batch_images.input_ids == self.image_token_id
317
+
318
+ @staticmethod
319
+ def score_single_vector(
320
+ qs: List[torch.Tensor],
321
+ ps: List[torch.Tensor],
322
+ device: Optional[Union[str, torch.device]] = None,
323
+ ) -> torch.Tensor:
324
+ """
325
+ Compute the dot product score for the given single-vector query and passage embeddings.
326
+ """
327
+
328
+ if len(qs) == 0:
329
+ raise ValueError("No queries provided")
330
+ if len(ps) == 0:
331
+ raise ValueError("No passages provided")
332
+
333
+ qs_stacked = torch.stack(qs).to(device)
334
+ ps_stacked = torch.stack(ps).to(device)
335
+
336
+ scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
337
+ assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
338
+
339
+ scores = scores.to(torch.float32)
340
+ return scores
341
+
342
+ @staticmethod
343
+ def score_multi_vector(
344
+ qs: Union[torch.Tensor, List[torch.Tensor]],
345
+ ps: Union[torch.Tensor, List[torch.Tensor]],
346
+ batch_size: int = 128,
347
+ device: Optional[Union[str, torch.device]] = None,
348
+ ) -> torch.Tensor:
349
+ """
350
+ Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
351
+ query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
352
+ image of a document page.
353
+
354
+ Because the embedding tensors are multi-vector and can thus have different shapes, they
355
+ should be fed as:
356
+ (1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
357
+ (2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
358
+ obtained by padding the list of tensors.
359
+
360
+ Args:
361
+ qs (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings.
362
+ ps (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings.
363
+ batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores.
364
+ device (`Union[str, torch.device]`, *optional*): Device to use for computation. If not
365
+ provided, uses `get_torch_device("auto")`.
366
+
367
+ Returns:
368
+ `torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
369
+ tensor is saved on the "cpu" device.
370
+ """
371
+
372
+ if len(qs) == 0:
373
+ raise ValueError("No queries provided")
374
+ if len(ps) == 0:
375
+ raise ValueError("No passages provided")
376
+
377
+ scores_list: List[torch.Tensor] = []
378
+
379
+ for i in range(0, len(qs), batch_size):
380
+ scores_batch = []
381
+ qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i: i + batch_size], batch_first=True, padding_value=0).to(
382
+ device
383
+ )
384
+ for j in range(0, len(ps), batch_size):
385
+ ps_batch = torch.nn.utils.rnn.pad_sequence(
386
+ ps[j: j + batch_size], batch_first=True, padding_value=0
387
+ ).to(device)
388
+ scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
389
+ scores_batch = torch.cat(scores_batch, dim=1).cpu()
390
+ scores_list.append(scores_batch)
391
+
392
+ scores = torch.cat(scores_list, dim=0)
393
+ assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
394
+
395
+ scores = scores.to(torch.float32)
396
+ return scores
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "49155": {
182
+ "content": "<image>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<|start_of_role|>",
192
+ "<|end_of_role|>",
193
+ "<|tool_call|>"
194
+ ],
195
+ "bos_token": "<|end_of_text|>",
196
+ "chat_template": "{%- if tools %}\n {{- '<|start_of_role|>available_tools<|end_of_role|>\n' }}\n {%- for tool in tools %}\n {{- tool | tojson(indent=4) }}\n {%- if not loop.last %}\n {{- '\n\n' }}\n {%- endif %}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in messages if message['role'] == 'system'%}{% else %}<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n{% endfor %}{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n {{- '<|system|>\n' + message['content'] + '\n' }}\n {%- elif message['role'] == 'user' %}\n {{- '<|user|>\n' + message['content'] + '\n' }}\n {%- elif message['role'] == 'assistant' %}\n {{- '<|assistant|>\n' + message['content'] + '<|end_of_text|>' }}\n {%- elif message['role'] == 'assistant_tool_call' %}\n {{- '<|start_of_role|>assistant<|end_of_role|><|tool_call|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'tool_response' %}\n {{- '<|start_of_role|>tool_response<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- endif %}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|assistant|>\n' }}\n {%- endif %}\n{%- endfor %}",
197
+ "clean_up_tokenization_spaces": true,
198
+ "eos_token": "<|end_of_text|>",
199
+ "errors": "replace",
200
+ "extra_special_tokens": {},
201
+ "model_max_length": 16384,
202
+ "pad_token": "<|end_of_text|>",
203
+ "padding_side": "right",
204
+ "processor_class": "ColGraniteVisionProcessor",
205
+ "tokenizer_class": "GPT2Tokenizer",
206
+ "unk_token": "<|end_of_text|>",
207
+ "vocab_size": 49152
208
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff