Update README.md (#1)
Browse files- Update README.md (fd0d47c445e285b7f5ee5ccbc6381635b5d4a4d0)
Co-authored-by: Ye Zhenjie <[email protected]>
README.md
CHANGED
@@ -1,36 +1,35 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model:
|
4 |
-
- inclusionAI/Ling-flash-base-2.0
|
5 |
pipeline_tag: text-generation
|
6 |
library_name: transformers
|
7 |
---
|
8 |
|
9 |
-
|
10 |
-
|
11 |
<p align="center">
|
12 |
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
|
13 |
<p>
|
14 |
|
15 |
-
<p align="center">🤗 <a href="https://huggingface.co/inclusionAI">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a></p>
|
16 |
-
|
17 |
|
18 |
## Introduction
|
19 |
|
20 |
-
Today,
|
21 |
-
Following the release of the
|
22 |
-
Trained on
|
23 |
|
24 |
### Powerful Complex Reasoning Abilities
|
25 |
|
26 |
We conducted a comprehensive evaluation of Ling-flash-2.0’s reasoning capabilities, reporting strong results on representative benchmarks:
|
27 |
-
* __Multi-disciplinary knowledge reasoning__: GPQA-Diamond, MMLU-Pro
|
28 |
-
* __Advanced mathematical reasoning__: AIME 2025, Omni-MATH, OptMATH (advanced mathematical optimization tasks)
|
29 |
-
* __Challenging code generation__: LiveCodeBench v6, CodeForces-Elo
|
30 |
-
* __Logical reasoning__: KOR-Bench, ARC-Prize
|
31 |
-
* __Key regulated industries (Finance, Healthcare)__: FinanceReasoning, HealthBench
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
<p align="center">
|
35 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/zxAvQ7QtrAwAAAAAQqAAAAgADkZ7AQFr/fmt.webp"/>
|
36 |
<p>
|
@@ -45,11 +44,11 @@ Compared with __dense models under 40B__ (e.g., Qwen3-32B-Non-Thinking, Seed-OSS
|
|
45 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/fMdiQZqYKSAAAAAAVdAAAAgADkZ7AQFr/fmt.avif"/>
|
46 |
<p>
|
47 |
|
48 |
-
Guided by [Ling Scaling Laws](https://arxiv.org/abs/2507.17702), Ling 2.0 adopts a
|
49 |
-
In other words, with just
|
50 |
-
* On __H20 hardware__, Ling-flash-2.0 achieves __200+ tokens/s__, offering __3× speedups__ compared to 36B dense models in everyday use.
|
51 |
-
* With __YaRN extrapolation__, it supports __128K context length__, and as output length grows, its relative speedup can reach __7× or more__.
|
52 |
|
|
|
|
|
53 |
|
54 |
<p align="center">
|
55 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/oR9UTY7S0QgAAAAAgKAAAAgADkZ7AQFr/original"/>
|
@@ -59,25 +58,57 @@ In other words, with just __6.1B activated parameters (4.8B non-embedding)__, __
|
|
59 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/Hid1RrgsCUAAAAAAQYAAAAgADkZ7AQFr/fmt.webp"/>
|
60 |
<p>
|
61 |
|
62 |
-
|
63 |
## Model Downloads
|
64 |
|
65 |
You can download the following table to see the various stage of Ling-flash-2.0 models. If you are located in mainland China, we also provide the model on ModelScope.cn to speed up the download process.
|
66 |
|
67 |
<center>
|
68 |
|
69 |
-
|
|
70 |
-
|
71 |
-
|
|
72 |
-
|
|
73 |
|
74 |
</center>
|
75 |
|
76 |
Note: If you are interested in previous version, please visit the past model collections in [Huggingface](https://huggingface.co/inclusionAI) or [ModelScope](https://modelscope.cn/organization/inclusionAI).
|
77 |
|
78 |
-
|
79 |
## Quickstart
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
### 🤗 Hugging Face Transformers
|
82 |
|
83 |
Here is a code snippet to show you how to use the chat model with `transformers`:
|
@@ -177,7 +208,9 @@ vllm serve inclusionAI/Ling-flash-2.0 \
|
|
177 |
```
|
178 |
|
179 |
To handle long context in vLLM using YaRN, we need to follow these two steps:
|
|
|
180 |
1. Add a `rope_scaling` field to the model's `config.json` file, for example:
|
|
|
181 |
```json
|
182 |
{
|
183 |
...,
|
@@ -188,24 +221,29 @@ To handle long context in vLLM using YaRN, we need to follow these two steps:
|
|
188 |
}
|
189 |
}
|
190 |
```
|
|
|
191 |
2. Use an additional parameter `--max-model-len` to specify the desired maximum context length when starting the vLLM service.
|
192 |
|
193 |
For detailed guidance, please refer to the vLLM [`instructions`](https://docs.vllm.ai/en/latest/).
|
194 |
|
195 |
-
|
196 |
### SGLang
|
197 |
|
198 |
#### Environment Preparation
|
199 |
|
200 |
We will later submit our model to SGLang official release, now we can prepare the environment following steps:
|
|
|
201 |
```shell
|
202 |
pip3 install sglang==0.5.2rc0 sgl-kernel==0.3.7.post1
|
203 |
```
|
|
|
204 |
You can use docker image as well:
|
|
|
205 |
```shell
|
206 |
docker pull lmsysorg/sglang:v0.5.2rc0-cu126
|
207 |
```
|
|
|
208 |
Then you should apply patch to sglang installation:
|
|
|
209 |
```shell
|
210 |
# patch command is needed, run `yum install -y patch` if needed
|
211 |
patch -d `python -c 'import sglang;import os; print(os.path.dirname(sglang.__file__))'` -p3 < inference/sglang/bailing_moe_v2.patch
|
@@ -213,9 +251,10 @@ patch -d `python -c 'import sglang;import os; print(os.path.dirname(sglang.__fil
|
|
213 |
|
214 |
#### Run Inference
|
215 |
|
216 |
-
BF16 and FP8 models are supported by SGLang now, it depends on the dtype of the model in ${MODEL_PATH}. They both share the same command in the following:
|
217 |
|
218 |
- Start server:
|
|
|
219 |
```shell
|
220 |
python -m sglang.launch_server \
|
221 |
--model-path $MODLE_PATH \
|
@@ -223,6 +262,7 @@ python -m sglang.launch_server \
|
|
223 |
--trust-remote-code \
|
224 |
--attention-backend fa3
|
225 |
```
|
|
|
226 |
MTP is supported for base model, and not yet for chat model. You can add parameter `--speculative-algorithm NEXTN`
|
227 |
to start command.
|
228 |
|
@@ -236,8 +276,6 @@ curl -s http://localhost:${PORT}/v1/chat/completions \
|
|
236 |
|
237 |
More usage can be found [here](https://docs.sglang.ai/basic_usage/send_request.html)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
### Finetuning
|
242 |
|
243 |
We recommend you to use [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory) to [finetune Ling](https://github.com/inclusionAI/Ling-V2/blob/main/docs/llamafactory_finetuning.md).
|
@@ -245,5 +283,3 @@ We recommend you to use [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory
|
|
245 |
## License
|
246 |
|
247 |
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ling-V2/blob/master/LICENCE).
|
248 |
-
|
249 |
-
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model:
|
4 |
+
- inclusionAI/Ling-flash-base-2.0
|
5 |
pipeline_tag: text-generation
|
6 |
library_name: transformers
|
7 |
---
|
8 |
|
|
|
|
|
9 |
<p align="center">
|
10 |
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
|
11 |
<p>
|
12 |
|
13 |
+
<p align="center">🤗 <a href="https://huggingface.co/inclusionAI">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>   |   🐙 <a href="https://zenmux.ai/inclusionai/ling-flash-2.0">ChatNow</a></p>
|
|
|
14 |
|
15 |
## Introduction
|
16 |
|
17 |
+
Today, **Ling-flash-2.0** is officially open-sourced! 🚀
|
18 |
+
Following the release of the **language model [Ling-mini-2.0](https://huggingface.co/inclusionAI/Ling-mini-2.0)** and the **thinking model [Ring-mini-2.0](https://huggingface.co/inclusionAI/Ring-mini-2.0)**, we are now open-sourcing the third MoE LLM under the **Ling 2.0 architecture: Ling-flash-2.0**, a language model with **100B total parameters** and **6.1B activated parameters (4.8B non-embedding)**.
|
19 |
+
Trained on **20T+ tokens of high-quality data**, together with **supervised fine-tuning** and **multi-stage reinforcement learning**, Ling-flash-2.0 achieves **SOTA performance among dense models under 40B parameters**, despite activating only ~6B parameters. Compared to MoE models with larger activation/total parameters, it also demonstrates strong competitiveness. Notably, it delivers outstanding performance in **complex reasoning, code generation, and frontend development**.
|
20 |
|
21 |
### Powerful Complex Reasoning Abilities
|
22 |
|
23 |
We conducted a comprehensive evaluation of Ling-flash-2.0’s reasoning capabilities, reporting strong results on representative benchmarks:
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
- **Multi-disciplinary knowledge reasoning**: GPQA-Diamond, MMLU-Pro
|
26 |
+
- **Advanced mathematical reasoning**: AIME 2025, Omni-MATH, OptMATH (advanced mathematical optimization tasks)
|
27 |
+
- **Challenging code generation**: LiveCodeBench v6, CodeForces-Elo
|
28 |
+
- **Logical reasoning**: KOR-Bench, ARC-Prize
|
29 |
+
- **Key regulated industries (Finance, Healthcare)**: FinanceReasoning, HealthBench
|
30 |
+
|
31 |
+
Compared with **dense models under 40B** (e.g., Qwen3-32B-Non-Thinking, Seed-OSS-36B-Instruct (think budget=0)) and **larger-activation/total-parameter MoE models** (e.g., Hunyuan-A13B-Instruct, GPT-OSS-120B/low), **Ling-flash-2.0** demonstrates stronger complex reasoning power. Moreover, it shows high competitiveness on **creative tasks** (Creative Writing v3).
|
32 |
+
|
33 |
<p align="center">
|
34 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/zxAvQ7QtrAwAAAAAQqAAAAgADkZ7AQFr/fmt.webp"/>
|
35 |
<p>
|
|
|
44 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/fMdiQZqYKSAAAAAAVdAAAAgADkZ7AQFr/fmt.avif"/>
|
45 |
<p>
|
46 |
|
47 |
+
Guided by [Ling Scaling Laws](https://arxiv.org/abs/2507.17702), Ling 2.0 adopts a **1/32 activation-ratio MoE architecture**, optimized across multiple design choices: expert granularity, shared-expert ratio, attention balance, **aux-loss-free + sigmoid routing strategy**, MTP layers, QK-Norm, Partial-RoPE, and more. These refinements enable **small-activation MoE** models to achieve **7× efficiency gains** over equivalent dense architectures.
|
48 |
+
In other words, with just **6.1B activated parameters (4.8B non-embedding)**, **Ling-flash-2.0** can match the performance of ~40B dense models. Thanks to its small activation size, it also delivers major inference speed advantages:
|
|
|
|
|
49 |
|
50 |
+
- On **H20 hardware**, Ling-flash-2.0 achieves **200+ tokens/s**, offering **3× speedups** compared to 36B dense models in everyday use.
|
51 |
+
- With **YaRN extrapolation**, it supports **128K context length**, and as output length grows, its relative speedup can reach **7× or more**.
|
52 |
|
53 |
<p align="center">
|
54 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/oR9UTY7S0QgAAAAAgKAAAAgADkZ7AQFr/original"/>
|
|
|
58 |
<img src="https://mdn.alipayobjects.com/huamei_fi95qp/afts/img/Hid1RrgsCUAAAAAAQYAAAAgADkZ7AQFr/fmt.webp"/>
|
59 |
<p>
|
60 |
|
|
|
61 |
## Model Downloads
|
62 |
|
63 |
You can download the following table to see the various stage of Ling-flash-2.0 models. If you are located in mainland China, we also provide the model on ModelScope.cn to speed up the download process.
|
64 |
|
65 |
<center>
|
66 |
|
67 |
+
| **Model** | **Context Length** | **Download** |
|
68 |
+
| :-----------------: | :----------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
69 |
+
| Ling-flash-base-2.0 | 32K -> 128K (YaRN) | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-flash-base-2.0) <br>[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-flash-base-2.0) |
|
70 |
+
| Ling-flash-2.0 | 32K -> 128K (YaRN) | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-flash-2.0) <br>[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-flash-2.0) |
|
71 |
|
72 |
</center>
|
73 |
|
74 |
Note: If you are interested in previous version, please visit the past model collections in [Huggingface](https://huggingface.co/inclusionAI) or [ModelScope](https://modelscope.cn/organization/inclusionAI).
|
75 |
|
|
|
76 |
## Quickstart
|
77 |
|
78 |
+
### 🚀 Try Online
|
79 |
+
|
80 |
+
You can experience Ling-flash-2.0 online at: [ZenMux](https://zenmux.ai/inclusionai/ling-flash-2.0)
|
81 |
+
|
82 |
+
### 🔌 API Usage
|
83 |
+
|
84 |
+
You can also use Ling-flash-2.0 through API calls:
|
85 |
+
|
86 |
+
```python
|
87 |
+
from openai import OpenAI
|
88 |
+
|
89 |
+
# 1. Initialize the OpenAI client
|
90 |
+
client = OpenAI(
|
91 |
+
# 2. Point the base URL to the ZenMux endpoint
|
92 |
+
base_url="https://zenmux.ai/api/v1",
|
93 |
+
# 3. Replace with the API Key from your ZenMux user console
|
94 |
+
api_key="<your ZENMUX_API_KEY>",
|
95 |
+
)
|
96 |
+
|
97 |
+
# 4. Make a request
|
98 |
+
completion = client.chat.completions.create(
|
99 |
+
# 5. Specify the model to use in the format "provider/model-name"
|
100 |
+
model="inclusionai/ling-flash-2.0",
|
101 |
+
messages=[
|
102 |
+
{
|
103 |
+
"role": "user",
|
104 |
+
"content": "What is the meaning of life?"
|
105 |
+
}
|
106 |
+
]
|
107 |
+
)
|
108 |
+
|
109 |
+
print(completion.choices[0].message.content)
|
110 |
+
```
|
111 |
+
|
112 |
### 🤗 Hugging Face Transformers
|
113 |
|
114 |
Here is a code snippet to show you how to use the chat model with `transformers`:
|
|
|
208 |
```
|
209 |
|
210 |
To handle long context in vLLM using YaRN, we need to follow these two steps:
|
211 |
+
|
212 |
1. Add a `rope_scaling` field to the model's `config.json` file, for example:
|
213 |
+
|
214 |
```json
|
215 |
{
|
216 |
...,
|
|
|
221 |
}
|
222 |
}
|
223 |
```
|
224 |
+
|
225 |
2. Use an additional parameter `--max-model-len` to specify the desired maximum context length when starting the vLLM service.
|
226 |
|
227 |
For detailed guidance, please refer to the vLLM [`instructions`](https://docs.vllm.ai/en/latest/).
|
228 |
|
|
|
229 |
### SGLang
|
230 |
|
231 |
#### Environment Preparation
|
232 |
|
233 |
We will later submit our model to SGLang official release, now we can prepare the environment following steps:
|
234 |
+
|
235 |
```shell
|
236 |
pip3 install sglang==0.5.2rc0 sgl-kernel==0.3.7.post1
|
237 |
```
|
238 |
+
|
239 |
You can use docker image as well:
|
240 |
+
|
241 |
```shell
|
242 |
docker pull lmsysorg/sglang:v0.5.2rc0-cu126
|
243 |
```
|
244 |
+
|
245 |
Then you should apply patch to sglang installation:
|
246 |
+
|
247 |
```shell
|
248 |
# patch command is needed, run `yum install -y patch` if needed
|
249 |
patch -d `python -c 'import sglang;import os; print(os.path.dirname(sglang.__file__))'` -p3 < inference/sglang/bailing_moe_v2.patch
|
|
|
251 |
|
252 |
#### Run Inference
|
253 |
|
254 |
+
BF16 and FP8 models are supported by SGLang now, it depends on the dtype of the model in ${MODEL_PATH}. They both share the same command in the following:
|
255 |
|
256 |
- Start server:
|
257 |
+
|
258 |
```shell
|
259 |
python -m sglang.launch_server \
|
260 |
--model-path $MODLE_PATH \
|
|
|
262 |
--trust-remote-code \
|
263 |
--attention-backend fa3
|
264 |
```
|
265 |
+
|
266 |
MTP is supported for base model, and not yet for chat model. You can add parameter `--speculative-algorithm NEXTN`
|
267 |
to start command.
|
268 |
|
|
|
276 |
|
277 |
More usage can be found [here](https://docs.sglang.ai/basic_usage/send_request.html)
|
278 |
|
|
|
|
|
279 |
### Finetuning
|
280 |
|
281 |
We recommend you to use [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory) to [finetune Ling](https://github.com/inclusionAI/Ling-V2/blob/main/docs/llamafactory_finetuning.md).
|
|
|
283 |
## License
|
284 |
|
285 |
This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ling-V2/blob/master/LICENCE).
|
|
|
|