Ulov888 commited on
Commit
de5eed5
·
verified ·
1 Parent(s): a74d287

Add files using upload-large-folder tool

Browse files
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BailingMoeV2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_bailing_moe_v2.BailingMoeV2Config",
8
+ "AutoModel": "modeling_bailing_moe_v2.BailingMoeV2Model",
9
+ "AutoModelForCausalLM": "modeling_bailing_moe_v2.BailingMoeV2ForCausalLM"
10
+ },
11
+ "num_hidden_layers": 32,
12
+ "hidden_size": 4096,
13
+ "intermediate_size": 9216,
14
+ "eos_token_id": 156895,
15
+ "pad_token_id": 156892,
16
+ "first_k_dense_replace": 1,
17
+ "hidden_act": "silu",
18
+ "max_position_embeddings": 32768,
19
+ "model_type": "bailing_moe",
20
+ "moe_intermediate_size": 1024,
21
+ "norm_topk_prob": true,
22
+ "num_experts_per_tok": 8,
23
+ "num_attention_heads": 32,
24
+ "num_experts": 256,
25
+ "num_key_value_heads": 4,
26
+ "rope_theta": 600000,
27
+ "rope_scaling": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.52.3",
31
+ "use_bias": false,
32
+ "use_rmsnorm": true,
33
+ "rms_norm_eps": 1e-06,
34
+ "head_dim": 128,
35
+ "num_shared_experts": 1,
36
+ "use_cache": true,
37
+ "use_qkv_bias": false,
38
+ "embedding_dropout": 0.0,
39
+ "output_dropout": 0.0,
40
+ "vocab_size": 157184,
41
+ "partial_rotary_factor": 0.5,
42
+ "router_dtype": "fp32",
43
+ "moe_router_enable_expert_bias": true,
44
+ "routed_scaling_factor": 2.5,
45
+ "n_group": 8,
46
+ "topk_group": 4,
47
+ "use_qk_norm": true,
48
+ "score_function": "sigmoid",
49
+ "moe_shared_expert_intermediate_size": 1024
50
+ }
configuration_bailing_moe_v2.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Bailing MoE V2 model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+
6
+ class BailingMoeV2Config(PretrainedConfig):
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=157184,
11
+ hidden_size=2048,
12
+ intermediate_size=5120,
13
+ num_hidden_layers=20,
14
+ num_attention_heads=16,
15
+ num_key_value_heads=4,
16
+ hidden_act="silu",
17
+ use_qkv_bias=False, # bailing only
18
+ use_bias=False, # bailing only
19
+ rms_norm_eps=1e-06,
20
+ tie_word_embeddings=False, # PretrainedConfig key, here change default value.
21
+ embedding_dropout=0.0,
22
+ attention_dropout=0.0,
23
+ output_dropout=0.0,
24
+ initializer_range=0.02,
25
+ max_position_embeddings=32768,
26
+ rope_theta=600000.0,
27
+ use_cache=True,
28
+ max_window_layers=20,
29
+ rope_scaling=None,
30
+ pad_token_id=156892,
31
+ eos_token_id=156892,
32
+ num_experts=256,
33
+ num_shared_experts=1,
34
+ num_experts_per_tok=8,
35
+ n_group=8,
36
+ topk_group=4,
37
+ moe_intermediate_size=512,
38
+ first_k_dense_replace=1,
39
+ head_dim=128,
40
+ output_router_logits=False,
41
+ use_qk_norm=True,
42
+ num_nextn_predict_layers=0,
43
+ mtp_loss_scaling_factor=0,
44
+ moe_router_enable_expert_bias=True,
45
+ routed_scaling_factor=1.0,
46
+ **kwargs,
47
+ ):
48
+ self.num_hidden_layers = num_hidden_layers
49
+ self.vocab_size = vocab_size
50
+ self.hidden_size = hidden_size
51
+ self.intermediate_size = intermediate_size
52
+ self.num_attention_heads = num_attention_heads
53
+ self.num_key_value_heads = num_key_value_heads
54
+ self.hidden_act = hidden_act
55
+ self.use_qkv_bias = use_qkv_bias
56
+ self.use_bias = use_bias
57
+ self.rms_norm_eps = rms_norm_eps
58
+ self.embedding_dropout = embedding_dropout
59
+ self.attention_dropout = attention_dropout
60
+ self.output_dropout = output_dropout
61
+ self.num_nextn_predict_layers = num_nextn_predict_layers
62
+ self.mtp_loss_scaling_factor = mtp_loss_scaling_factor
63
+ self.initializer_range = initializer_range
64
+ self.max_position_embeddings = max_position_embeddings
65
+ self.rope_theta = rope_theta
66
+ self.use_cache = use_cache
67
+ self.max_window_layers = max_window_layers
68
+ self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
69
+ self.rope_scaling = rope_scaling
70
+ self.use_qk_norm = use_qk_norm
71
+ self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
72
+ self.routed_scaling_factor = routed_scaling_factor
73
+
74
+ # MoE configs
75
+ self.num_experts = num_experts
76
+ self.num_shared_experts = num_shared_experts
77
+ self.num_experts_per_tok = num_experts_per_tok
78
+ self.n_group = n_group
79
+ self.topk_group = topk_group
80
+ self.moe_intermediate_size = moe_intermediate_size
81
+ self.first_k_dense_replace = first_k_dense_replace
82
+ self.output_router_logits = output_router_logits
83
+
84
+ super().__init__(pad_token_id=pad_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 156891,
3
+ "eos_token_id": [
4
+ 156892,
5
+ 156895
6
+ ],
7
+ "pad_token_id": 156892,
8
+ "transformers_version": "4.52.3"
9
+ }
model-00001-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa1046a03abe1a8b8eda04265c0d0561a9f7c58327cbf39b946185c598160516
3
+ size 7730198080
model-00002-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9339304e1748e25d8e9182b58389534077b934a063a94b6ff211036711c2fc0
3
+ size 10737577896
model-00003-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5eaecb0c505318fffb30a1e7a14daec0b9989cab55416f838c4c902786b5277
3
+ size 8590062440
model-00004-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df1d6765e4c3ec1263dbeb1311889ab2ce9e9430c911dbc70bca93cfea016903
3
+ size 10737577896
model-00005-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e4e8199fced7c771905a1f77d3fb243ef001d22e24df24e6727e5dd84d56cf4
3
+ size 8590062440
model-00006-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38e218458fdbd727794fc7fe085d1f826a6cbcb10d4b35078f0a78cf883fddfe
3
+ size 10737579176
model-00007-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dffe4e256429efd7d8a2caa7bcddb5454de631d526adc2db4a9f602eca5e321c
3
+ size 8590063464
model-00008-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf9d3564e857808d00cdfe596ff47bdd1e158a26a7da068e98ebbf844ad28b92
3
+ size 10737579176
model-00009-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5168a0ffa6e14c77c5a671f7c888572d09e1ea7d573aa338f10aeae7d04dea4
3
+ size 8590063464
model-00010-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a881146d1c813f5484917c84c4b1e85218794587e979af050631d1a12db8f644
3
+ size 10737579176
model-00011-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:278b5fa311c9371eaead94e59e6dd7864f8331e25c324680bbbb03063f7e20d2
3
+ size 10433765840
model-00012-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5605a4039902c9d8c46846060e86a5318296e4bd2112787d9bc3b05e01eb071
3
+ size 10737578408
model-00013-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4975e8908cf71ebc3add6dca100a090b19b381c65e8898b34793f90090735b5
3
+ size 8590063464
model-00014-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e73e372b91f30104cce65c32cf2019aa435b7b79e4555f0ff2d0641a9f25b69
3
+ size 10737579176
model-00015-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d376ab3f26cdef048c8b1f581246d1aacf36af6b1801f6193b45e3e4909d992e
3
+ size 8590063464
model-00016-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0986a2ff8b83f3168d17682c179dd79bdc5a6e937e5bb8a4e53912e0e1e834aa
3
+ size 10737579176
model-00017-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7127911ea38d0ffe781ab80a090bb7f0b3127932e3e93b3e57dd2a68abcf747
3
+ size 8590063464
model-00018-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e806c1010039bd9dd2c6d196bf5ae821cc1bcc882d369e75045a635e43d7529b
3
+ size 10737579176
model-00019-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa3b074ba65f8c30208a7abf29d34d58e99d9cb5dff8642345e52cc67a8ae473
3
+ size 8590063464
model-00020-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d6a4e1d6158ca063914af80f6907603a5fd56749a14b19c9bc9922e56fa7a4c
3
+ size 10737579176
model-00021-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f661401b43fc1dcfa664ec2da7218741f7982d22f341690107afcbfbd580454d
3
+ size 10699804664
model-00022-of-00022.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0566863fb577e92391c35f5c3217c7f2e29a2dc78435f75bb60baeb114698062
3
+ size 822393536
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_bailing_moe_v2.py ADDED
@@ -0,0 +1,1533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch BailingMoE model."""
21
+
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ from torch import nn
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.cache_utils import Cache, DynamicCache
32
+ from transformers.modeling_attn_mask_utils import (
33
+ AttentionMaskConverter,
34
+ _prepare_4d_attention_mask,
35
+ _prepare_4d_causal_attention_mask,
36
+ _prepare_4d_causal_attention_mask_for_sdpa,
37
+ )
38
+ from transformers.modeling_outputs import MoeModelOutputWithPast
39
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_bailing_moe_v2 import BailingMoeV2Config
52
+ from transformers.generation.utils import GenerationMixin
53
+ from dataclasses import dataclass
54
+ from transformers.utils import ModelOutput
55
+
56
+
57
+ if is_flash_attn_2_available():
58
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
59
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
+
61
+
62
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
63
+ # It means that the function will not be traced through and simply appear as a node in the graph.
64
+ if is_torch_fx_available():
65
+ if not is_torch_greater_or_equal_than_1_13:
66
+ import torch.fx
67
+
68
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
69
+
70
+
71
+ logger = logging.get_logger(__name__)
72
+
73
+ _CONFIG_FOR_DOC = "BailingMoeV2Config"
74
+
75
+
76
+ def roll_tensor(tensor, shifts=-1, dims=-1, fill_value=0):
77
+ """Roll the tensor input along the given dimension(s).
78
+ Inserted elements are set to be 0.0.
79
+ """
80
+ rolled_tensor = torch.roll(tensor, shifts=shifts, dims=dims)
81
+ rolled_tensor.select(dims, shifts).fill_(fill_value)
82
+ return rolled_tensor, rolled_tensor.sum()
83
+
84
+
85
+ @dataclass
86
+ class MoEV2CausalLMOutputWithPast(ModelOutput):
87
+ """
88
+ Base class for causal language model (or autoregressive) outputs as well as Mixture of Expert's router hidden
89
+ states terms, to train a MoE model.
90
+
91
+ Args:
92
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
93
+ Language modeling loss (for next-token prediction).
94
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
95
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
96
+ past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
97
+ It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
98
+
99
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
100
+ `past_key_values` input) to speed up sequential decoding.
101
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
102
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
103
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
104
+
105
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
106
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
107
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
108
+ sequence_length)`.
109
+
110
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
111
+ heads.
112
+ z_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
113
+ z_loss for the sparse modules.
114
+ aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
115
+ aux_loss for the sparse modules.
116
+ router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
117
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
118
+
119
+ Router logits of the encoder model, useful to compute the auxiliary loss and the z_loss for the sparse
120
+ modules.
121
+ """
122
+
123
+ loss: Optional[torch.FloatTensor] = None
124
+ logits: Optional[torch.FloatTensor] = None
125
+ past_key_values: Optional[Cache] = None
126
+ hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
127
+ attentions: Optional[tuple[torch.FloatTensor, ...]] = None
128
+ z_loss: Optional[torch.FloatTensor] = None
129
+ aux_loss: Optional[torch.FloatTensor] = None
130
+ router_logits: Optional[tuple[torch.FloatTensor]] = None
131
+ mtp_loss: Optional[torch.FloatTensor] = None
132
+ mtp_logits: Optional[tuple[torch.FloatTensor, ...]] = None
133
+
134
+
135
+ class MoeV2ModelOutputWithPast(MoeModelOutputWithPast):
136
+
137
+ def __init__(self, mtp_hidden_states=None, **kwargs):
138
+ super().__init__(**kwargs)
139
+ self.mtp_hidden_states = mtp_hidden_states
140
+
141
+
142
+ def _get_unpad_data(attention_mask):
143
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
144
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
145
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
146
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
147
+ return (
148
+ indices,
149
+ cu_seqlens,
150
+ max_seqlen_in_batch,
151
+ )
152
+
153
+
154
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
155
+ warnings.warn(
156
+ "Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
157
+ )
158
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
159
+
160
+
161
+ def _make_causal_mask(
162
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
163
+ ):
164
+ warnings.warn(
165
+ "Calling `transformers.models.BailingMoeV2.modeling_BailingMoeV2._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.BailingMoeV2.modeling_BailingMoeV2.AttentionMaskConverter._make_causal_mask"
166
+ )
167
+ return AttentionMaskConverter._make_causal_mask(
168
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
169
+ )
170
+
171
+
172
+ class BailingMoeV2RMSNorm(nn.Module):
173
+ def __init__(self, hidden_size, eps=1e-6):
174
+ """
175
+ BailingMoeV2RMSNorm is equivalent to T5LayerNorm
176
+ """
177
+ super().__init__()
178
+ self.weight = nn.Parameter(torch.ones(hidden_size))
179
+ self.variance_epsilon = eps
180
+
181
+ def forward(self, hidden_states):
182
+ input_dtype = hidden_states.dtype
183
+ hidden_states = hidden_states.to(torch.float32)
184
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
185
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
186
+ return self.weight * hidden_states.to(input_dtype)
187
+
188
+
189
+ ALL_LAYERNORM_LAYERS.append(BailingMoeV2RMSNorm)
190
+
191
+
192
+ class BailingMoeV2RotaryEmbedding(nn.Module):
193
+ def __init__(self, config: BailingMoeV2Config, device=None):
194
+ super().__init__()
195
+ # BC: "rope_type" was originally "type"
196
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
197
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
198
+ else:
199
+ self.rope_type = "default"
200
+ self.max_seq_len_cached = config.max_position_embeddings
201
+ self.original_max_seq_len = config.max_position_embeddings
202
+
203
+ self.config = config
204
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
205
+
206
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
207
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
208
+ self.original_inv_freq = self.inv_freq
209
+
210
+ @torch.no_grad()
211
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
212
+ def forward(self, x, position_ids):
213
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
214
+ position_ids_expanded = position_ids[:, None, :].float()
215
+
216
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
217
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
218
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
219
+ emb = torch.cat((freqs, freqs), dim=-1)
220
+ cos = emb.cos() * self.attention_scaling
221
+ sin = emb.sin() * self.attention_scaling
222
+
223
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
224
+
225
+
226
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
227
+ def rotate_half(x):
228
+ """Rotates half the hidden dims of the input."""
229
+ x1 = x[..., : x.shape[-1] // 2]
230
+ x2 = x[..., x.shape[-1] // 2 :]
231
+ return torch.cat((-x2, x1), dim=-1)
232
+
233
+
234
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
235
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
236
+ """Applies Rotary Position Embedding to the query and key tensors.
237
+
238
+ Args:
239
+ q (`torch.Tensor`): The query tensor.
240
+ k (`torch.Tensor`): The key tensor.
241
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
242
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
243
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
244
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
245
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
246
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
247
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
248
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
249
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
250
+ Returns:
251
+ `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
252
+ """
253
+ cos = cos.unsqueeze(unsqueeze_dim)
254
+ sin = sin.unsqueeze(unsqueeze_dim)
255
+
256
+ # Keep half or full tensor for later concatenation
257
+ rotary_dim = cos.shape[-1]
258
+ q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
259
+ k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
260
+
261
+ # Apply rotary embeddings on the first half or full tensor
262
+ q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
263
+ k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
264
+
265
+ # Concatenate back to full shape
266
+ q_embed = torch.cat([q_embed, q_pass], dim=-1)
267
+ k_embed = torch.cat([k_embed, k_pass], dim=-1)
268
+ return q_embed, k_embed
269
+
270
+
271
+ class BailingMoeV2MLP(nn.Module):
272
+ def __init__(self, config: BailingMoeV2Config, intermediate_size: int):
273
+ super().__init__()
274
+ self.config = config
275
+ self.hidden_size = config.hidden_size
276
+ self.intermediate_size = intermediate_size
277
+
278
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
279
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
280
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
281
+ self.act_fn = ACT2FN[config.hidden_act]
282
+
283
+ def forward(self, x):
284
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
285
+
286
+
287
+ class BailingMoeV2Gate(nn.Module):
288
+ def __init__(self, config):
289
+ super().__init__()
290
+ self.config = config
291
+ self.top_k = config.num_experts_per_tok
292
+ self.num_experts = config.num_experts
293
+
294
+ self.n_group = config.n_group
295
+ self.topk_group = config.topk_group
296
+
297
+ # topk selection algorithm
298
+ self.gating_dim = config.hidden_size
299
+ self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
300
+ self.routed_scaling_factor = config.routed_scaling_factor
301
+
302
+ self.register_buffer("expert_bias", torch.zeros((self.num_experts)))
303
+ self.reset_parameters()
304
+
305
+ def reset_parameters(self) -> None:
306
+ import torch.nn.init as init
307
+
308
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
309
+
310
+ def group_limited_topk(
311
+ self,
312
+ scores: torch.Tensor,
313
+ ):
314
+ num_tokens, _ = scores.size()
315
+ # Organize the experts into groups
316
+ group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
317
+ group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1]
318
+ group_mask = torch.zeros_like(group_scores)
319
+ group_mask.scatter_(1, group_idx, 1)
320
+
321
+ # Mask the experts based on selection groups
322
+ score_mask = (
323
+ group_mask.unsqueeze(-1)
324
+ .expand(num_tokens, self.n_group, self.num_experts // self.n_group)
325
+ .reshape(num_tokens, -1)
326
+ )
327
+
328
+ masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf'))
329
+ probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1)
330
+
331
+ return probs, top_indices
332
+
333
+ def forward(self, hidden_states):
334
+ # compute gating score
335
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
336
+ logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32))
337
+
338
+ scores = torch.sigmoid(logits.float()).type_as(logits)
339
+
340
+ scores_for_routing = scores + self.expert_bias
341
+ _, topk_idx = self.group_limited_topk(scores_for_routing)
342
+
343
+ scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
344
+
345
+ topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores
346
+ topk_weight = topk_weight * self.routed_scaling_factor
347
+
348
+ return topk_idx, topk_weight, logits
349
+
350
+
351
+ class BailingMoeV2SparseMoeBlock(nn.Module):
352
+ """
353
+ A mixed expert module containing shared experts.
354
+ """
355
+
356
+ def __init__(self, config: BailingMoeV2Config):
357
+ super().__init__()
358
+ self.config = config
359
+ self.num_experts_per_tok = config.num_experts_per_tok
360
+ self._setup_experts()
361
+ self.gate = BailingMoeV2Gate(config)
362
+ if config.num_shared_experts is not None:
363
+ self.shared_experts = BailingMoeV2MLP(
364
+ config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
365
+ )
366
+
367
+ def _setup_experts(self):
368
+ self.experts = nn.ModuleList(
369
+ [
370
+ BailingMoeV2MLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
371
+ for _ in range(self.config.num_experts)
372
+ ]
373
+ )
374
+
375
+ def forward(self, hidden_states):
376
+ identity = hidden_states
377
+ bsz, seq_len, h = hidden_states.shape
378
+ topk_idx, topk_weight, router_logits = self.gate(hidden_states)
379
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
380
+ flat_topk_idx = topk_idx.view(-1)
381
+ if self.training:
382
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
383
+ y = torch.empty_like(hidden_states)
384
+ for i, expert in enumerate(self.experts):
385
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
386
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
387
+ y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
388
+ else:
389
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
390
+ if self.config.num_shared_experts is not None:
391
+ y = y + self.shared_experts(identity)
392
+ return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
393
+
394
+ @torch.no_grad()
395
+ def moe_infer(self, x, topk_ids, topk_weight):
396
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
397
+ cnts.scatter_(1, topk_ids, 1)
398
+ tokens_per_expert = cnts.sum(dim=0)
399
+ idxs = topk_ids.view(-1).argsort()
400
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
401
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
402
+ outputs = []
403
+ start_idx = 0
404
+ for i, num_tokens in enumerate(tokens_per_expert):
405
+ end_idx = start_idx + num_tokens
406
+ if num_tokens == 0:
407
+ continue
408
+ expert = self.experts[i]
409
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
410
+ expert_out = expert(tokens_for_this_expert)
411
+ outputs.append(expert_out.to(x.device))
412
+ start_idx = end_idx
413
+
414
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
415
+ new_x = torch.empty_like(outs)
416
+ new_x[idxs] = outs
417
+ final_out = (
418
+ new_x.view(*topk_ids.shape, -1)
419
+ .type(topk_weight.dtype)
420
+ .mul_(topk_weight.unsqueeze(dim=-1))
421
+ .sum(dim=1)
422
+ .type(new_x.dtype)
423
+ )
424
+ return final_out
425
+
426
+
427
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
428
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
429
+ """
430
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
431
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
432
+ """
433
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
434
+ if n_rep == 1:
435
+ return hidden_states
436
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
437
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
438
+
439
+
440
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->BailingMoeV2
441
+ class BailingMoeV2Attention(nn.Module):
442
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
443
+
444
+ def __init__(self, config: BailingMoeV2Config, layer_idx: Optional[int] = None):
445
+ super().__init__()
446
+ self.config = config
447
+ self.layer_idx = layer_idx
448
+ if layer_idx is None:
449
+ logger.warning_once(
450
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
451
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
452
+ "when creating this class."
453
+ )
454
+
455
+ self.attention_dropout = config.attention_dropout
456
+ self.hidden_size = config.hidden_size
457
+ self.num_heads = config.num_attention_heads
458
+ self.head_dim = config.head_dim or self.hidden_size // self.num_heads
459
+ partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
460
+ self.rope_dim = int(self.head_dim * partial_rotary_factor)
461
+ self.num_key_value_heads = config.num_key_value_heads
462
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
463
+ self.max_position_embeddings = config.max_position_embeddings
464
+ self.rope_theta = config.rope_theta
465
+ self.is_causal = True
466
+
467
+ self.query_key_value = nn.Linear(
468
+ self.hidden_size,
469
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
470
+ bias=config.use_qkv_bias,
471
+ )
472
+
473
+ if self.config.use_qk_norm:
474
+ self.query_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
475
+ self.key_layernorm = BailingMoeV2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
476
+ self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
477
+
478
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
479
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
480
+
481
+ def forward(
482
+ self,
483
+ hidden_states: torch.Tensor,
484
+ attention_mask: Optional[torch.Tensor] = None,
485
+ position_ids: Optional[torch.LongTensor] = None,
486
+ past_key_value: Optional[Cache] = None,
487
+ output_attentions: bool = False,
488
+ use_cache: bool = False,
489
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
490
+ **kwargs,
491
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
492
+
493
+ bsz, q_len, _ = hidden_states.size()
494
+
495
+ qkv = self.query_key_value(hidden_states)
496
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
497
+
498
+ query_states, key_states, value_states = qkv.split(
499
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
500
+ )
501
+ query_states = query_states.transpose(1, 2)
502
+ key_states = key_states.transpose(1, 2)
503
+ value_states = value_states.transpose(1, 2)
504
+
505
+ if self.config.use_qk_norm:
506
+ query_states = self.query_layernorm(query_states)
507
+ key_states = self.key_layernorm(key_states)
508
+
509
+ cos, sin = position_embeddings
510
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
511
+
512
+ if past_key_value is not None:
513
+ if self.layer_idx is None:
514
+ raise ValueError(
515
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
516
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
517
+ "with a layer index."
518
+ )
519
+ cache_kwargs = {"sin": sin, "cos": cos}
520
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
521
+
522
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
523
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
524
+
525
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
526
+
527
+ kv_seq_len = key_states.shape[-2]
528
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
529
+ raise ValueError(
530
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
531
+ f" {attn_weights.size()}"
532
+ )
533
+
534
+ if attention_mask is not None:
535
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
536
+ raise ValueError(
537
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
538
+ )
539
+ attn_weights = attn_weights + attention_mask
540
+
541
+ # upcast attention to fp32
542
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
543
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
544
+ attn_output = torch.matmul(attn_weights, value_states)
545
+
546
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
547
+ raise ValueError(
548
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
549
+ f" {attn_output.size()}"
550
+ )
551
+
552
+ attn_output = attn_output.transpose(1, 2).contiguous()
553
+
554
+ attn_output = attn_output.reshape(bsz, q_len, -1)
555
+
556
+ attn_output = self.dense(attn_output)
557
+
558
+ if not output_attentions:
559
+ attn_weights = None
560
+
561
+ return attn_output, attn_weights, past_key_value
562
+
563
+
564
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->BailingMoeV2
565
+ class BailingMoeV2FlashAttention2(BailingMoeV2Attention):
566
+ """
567
+ BailingMoeV2 flash attention module. This module inherits from `BailingMoeV2Attention` as the weights of the module stays
568
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
569
+ flash attention and deal with padding tokens in case the input contains any of them.
570
+ """
571
+
572
+ def __init__(self, *args, **kwargs):
573
+ super().__init__(*args, **kwargs)
574
+
575
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
576
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
577
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
578
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
579
+
580
+ def forward(
581
+ self,
582
+ hidden_states: torch.Tensor,
583
+ attention_mask: Optional[torch.LongTensor] = None,
584
+ position_ids: Optional[torch.LongTensor] = None,
585
+ past_key_value: Optional[Cache] = None,
586
+ output_attentions: bool = False,
587
+ use_cache: bool = False,
588
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
589
+ **kwargs,
590
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
591
+ # BailingMoeV2FlashAttention2 attention does not support output_attentions
592
+ output_attentions = False
593
+
594
+ bsz, q_len, _ = hidden_states.size()
595
+
596
+ # Flash attention requires the input to have the shape
597
+ # batch_size x seq_length x head_dim x hidden_dim
598
+ # therefore we just need to keep the original shape
599
+
600
+ qkv = self.query_key_value(hidden_states)
601
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
602
+
603
+ query_states, key_states, value_states = qkv.split(
604
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
605
+ )
606
+ query_states = query_states.transpose(1, 2)
607
+ key_states = key_states.transpose(1, 2)
608
+ value_states = value_states.transpose(1, 2)
609
+
610
+ if self.config.use_qk_norm:
611
+ query_states = self.query_layernorm(query_states)
612
+ key_states = self.key_layernorm(key_states)
613
+
614
+ cos, sin = position_embeddings
615
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
616
+
617
+ if past_key_value is not None:
618
+ cache_kwargs = {"sin": sin, "cos": cos}
619
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
620
+
621
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
622
+ # to be able to avoid many of these transpose/reshape/view.
623
+ query_states = query_states.transpose(1, 2)
624
+ key_states = key_states.transpose(1, 2)
625
+ value_states = value_states.transpose(1, 2)
626
+
627
+ dropout_rate = self.attention_dropout if self.training else 0.0
628
+
629
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
630
+ # therefore the input hidden states gets silently cast in float32. Hence, we need
631
+ # cast them back in the correct dtype just to be sure everything works as expected.
632
+ # This might slow down training & inference so it is recommended to not cast the LayerNorms
633
+ # in fp32. (BailingMoeV2RMSNorm handles it correctly)
634
+
635
+ input_dtype = query_states.dtype
636
+ if input_dtype == torch.float32:
637
+ # Handle the case where the model is quantized
638
+ if hasattr(self.config, "_pre_quantization_dtype"):
639
+ target_dtype = self.config._pre_quantization_dtype
640
+ elif torch.is_autocast_enabled():
641
+ target_dtype = torch.get_autocast_gpu_dtype()
642
+ else:
643
+ target_dtype = self.query_key_value.weight.dtype
644
+
645
+ logger.warning_once(
646
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
647
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
648
+ f" {target_dtype}."
649
+ )
650
+
651
+ query_states = query_states.to(target_dtype)
652
+ key_states = key_states.to(target_dtype)
653
+ value_states = value_states.to(target_dtype)
654
+
655
+ attn_output = self._flash_attention_forward(
656
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
657
+ )
658
+
659
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
660
+ attn_output = self.dense(attn_output)
661
+
662
+ if not output_attentions:
663
+ attn_weights = None
664
+
665
+ return attn_output, attn_weights, past_key_value
666
+
667
+ def _flash_attention_forward(
668
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
669
+ ):
670
+ """
671
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
672
+ first unpad the input, then computes the attention scores and pad the final attention scores.
673
+
674
+ Args:
675
+ query_states (`torch.Tensor`):
676
+ Input query states to be passed to Flash Attention API
677
+ key_states (`torch.Tensor`):
678
+ Input key states to be passed to Flash Attention API
679
+ value_states (`torch.Tensor`):
680
+ Input value states to be passed to Flash Attention API
681
+ attention_mask (`torch.Tensor`):
682
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
683
+ position of padding tokens and 1 for the position of non-padding tokens.
684
+ dropout (`int`, *optional*):
685
+ Attention dropout
686
+ softmax_scale (`float`, *optional*):
687
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
688
+ query_length (`int`):
689
+ The length of the query sequence in terms of tokens. This represents the number of tokens in the
690
+ `query_states` tensor along the sequence dimension. It is used to determine the effective sequence
691
+ length for attention computations.
692
+ """
693
+ if not self._flash_attn_uses_top_left_mask:
694
+ causal = self.is_causal
695
+ else:
696
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BailingMoeV2FlashAttention2 __init__.
697
+ causal = self.is_causal and query_length != 1
698
+
699
+ # Contains at least one padding token in the sequence
700
+ if attention_mask is not None:
701
+ batch_size = query_states.shape[0]
702
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
703
+ query_states, key_states, value_states, attention_mask, query_length
704
+ )
705
+
706
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
707
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
708
+
709
+ attn_output_unpad = flash_attn_varlen_func(
710
+ query_states,
711
+ key_states,
712
+ value_states,
713
+ cu_seqlens_q=cu_seqlens_q,
714
+ cu_seqlens_k=cu_seqlens_k,
715
+ max_seqlen_q=max_seqlen_in_batch_q,
716
+ max_seqlen_k=max_seqlen_in_batch_k,
717
+ dropout_p=dropout,
718
+ softmax_scale=softmax_scale,
719
+ causal=causal,
720
+ )
721
+
722
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
723
+ else:
724
+ attn_output = flash_attn_func(
725
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
726
+ )
727
+
728
+ return attn_output
729
+
730
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
731
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
732
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
733
+
734
+ key_layer = index_first_axis(
735
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
736
+ )
737
+ value_layer = index_first_axis(
738
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
739
+ )
740
+ if query_length == kv_seq_len:
741
+ query_layer = index_first_axis(
742
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
743
+ )
744
+ cu_seqlens_q = cu_seqlens_k
745
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
746
+ indices_q = indices_k
747
+ elif query_length == 1:
748
+ max_seqlen_in_batch_q = 1
749
+ cu_seqlens_q = torch.arange(
750
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
751
+ ) # There is a memcpy here, that is very bad.
752
+ indices_q = cu_seqlens_q[:-1]
753
+ query_layer = query_layer.squeeze(1)
754
+ else:
755
+ # The -q_len: slice assumes left padding.
756
+ attention_mask = attention_mask[:, -query_length:]
757
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
758
+
759
+ return (
760
+ query_layer,
761
+ key_layer,
762
+ value_layer,
763
+ indices_q,
764
+ (cu_seqlens_q, cu_seqlens_k),
765
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
766
+ )
767
+
768
+
769
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->BailingMoeV2
770
+ class BailingMoeV2SdpaAttention(BailingMoeV2Attention):
771
+ """
772
+ BailingMoeV2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
773
+ `BailingMoeV2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
774
+ SDPA API.
775
+ """
776
+
777
+ # Adapted from BailingMoeV2Attention.forward
778
+ def forward(
779
+ self,
780
+ hidden_states: torch.Tensor,
781
+ attention_mask: Optional[torch.Tensor] = None,
782
+ position_ids: Optional[torch.LongTensor] = None,
783
+ past_key_value: Optional[Cache] = None,
784
+ output_attentions: bool = False,
785
+ use_cache: bool = False,
786
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
787
+ **kwargs,
788
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
789
+ if output_attentions:
790
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
791
+ logger.warning_once(
792
+ "BailingMoeV2Model is using BailingMoeV2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
793
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
794
+ )
795
+ return super().forward(
796
+ hidden_states=hidden_states,
797
+ attention_mask=attention_mask,
798
+ position_ids=position_ids,
799
+ past_key_value=past_key_value,
800
+ output_attentions=output_attentions,
801
+ use_cache=use_cache,
802
+ )
803
+
804
+ bsz, q_len, _ = hidden_states.size()
805
+
806
+ qkv = self.query_key_value(hidden_states)
807
+ qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
808
+
809
+ query_states, key_states, value_states = qkv.split(
810
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
811
+ )
812
+ query_states = query_states.transpose(1, 2)
813
+ key_states = key_states.transpose(1, 2)
814
+ value_states = value_states.transpose(1, 2)
815
+
816
+ if self.config.use_qk_norm:
817
+ query_states = self.query_layernorm(query_states)
818
+ key_states = self.key_layernorm(key_states)
819
+
820
+ cos, sin = position_embeddings
821
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
822
+
823
+ if past_key_value is not None:
824
+ cache_kwargs = {"sin": sin, "cos": cos}
825
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
826
+
827
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
828
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
829
+
830
+ if attention_mask is not None:
831
+ kv_seq_len = key_states.shape[-2]
832
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
833
+ raise ValueError(
834
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
835
+ )
836
+
837
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
838
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
839
+ if query_states.device.type == "cuda" and attention_mask is not None:
840
+ query_states = query_states.contiguous()
841
+ key_states = key_states.contiguous()
842
+ value_states = value_states.contiguous()
843
+
844
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
845
+ query_states,
846
+ key_states,
847
+ value_states,
848
+ attn_mask=attention_mask,
849
+ dropout_p=self.attention_dropout if self.training else 0.0,
850
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
851
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
852
+ )
853
+
854
+ attn_output = attn_output.transpose(1, 2).contiguous()
855
+ attn_output = attn_output.reshape(bsz, q_len, -1)
856
+
857
+ attn_output = self.dense(attn_output)
858
+
859
+ return attn_output, None, past_key_value
860
+
861
+
862
+ ATTENTION_CLASSES = {
863
+ "eager": BailingMoeV2Attention,
864
+ "flash_attention_2": BailingMoeV2FlashAttention2,
865
+ "sdpa": BailingMoeV2SdpaAttention,
866
+ }
867
+
868
+
869
+ class BailingMoeV2MTPLayer(nn.Module):
870
+ def __init__(self, config: BailingMoeV2Config, layer_idx: int):
871
+ super().__init__()
872
+ self.layer_idx = layer_idx
873
+ self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
874
+ self.enorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
875
+
876
+ self.eh_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
877
+ self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
878
+ self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
879
+ self.mlp = BailingMoeV2SparseMoeBlock(config)
880
+
881
+ self.hnorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
882
+ self.final_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
883
+
884
+ def forward(
885
+ self,
886
+ input_embeds,
887
+ hidden_states: torch.Tensor,
888
+ attention_mask: Optional[torch.Tensor] = None,
889
+ position_ids: Optional[torch.LongTensor] = None,
890
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
891
+ output_attentions: Optional[bool] = False,
892
+ output_router_logits: Optional[bool] = False,
893
+ use_cache: Optional[bool] = False,
894
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
895
+ **kwargs,
896
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
897
+ input_embeds = self.enorm(input_embeds)
898
+ hidden_states = self.hnorm(hidden_states)
899
+ hidden_states = self.eh_proj(torch.cat([input_embeds, hidden_states], dim=-1))
900
+ residual = hidden_states
901
+
902
+ hidden_states = self.input_layernorm(hidden_states)
903
+
904
+ # Self Attention
905
+ hidden_states, self_attn_weights, present_key_value = self.attention(
906
+ hidden_states=hidden_states,
907
+ attention_mask=attention_mask,
908
+ position_ids=position_ids,
909
+ past_key_value=past_key_value,
910
+ output_attentions=output_attentions,
911
+ position_embeddings=position_embeddings,
912
+ use_cache=use_cache,
913
+ )
914
+ hidden_states = residual + hidden_states
915
+
916
+ # Fully Connected
917
+ residual = hidden_states
918
+ hidden_states = self.post_attention_layernorm(hidden_states)
919
+ hidden_states = self.mlp(hidden_states)
920
+ if isinstance(hidden_states, tuple):
921
+ hidden_states, router_logits = hidden_states
922
+ else:
923
+ router_logits = None
924
+ hidden_states = residual + hidden_states.to(residual.device)
925
+ hidden_states = self.final_layernorm(hidden_states)
926
+
927
+ outputs = (hidden_states,)
928
+
929
+ if output_attentions:
930
+ outputs += (self_attn_weights,)
931
+
932
+ if use_cache:
933
+ outputs += (present_key_value,)
934
+
935
+ if output_router_logits:
936
+ outputs += (router_logits,)
937
+
938
+ return outputs
939
+
940
+
941
+ class BailingMoeV2DecoderLayer(nn.Module):
942
+ def __init__(self, config: BailingMoeV2Config, layer_idx: int):
943
+ super().__init__()
944
+ self.hidden_size = config.hidden_size
945
+
946
+ self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
947
+
948
+ self.mlp = (
949
+ BailingMoeV2SparseMoeBlock(config)
950
+ if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
951
+ else BailingMoeV2MLP(config=config, intermediate_size=config.intermediate_size)
952
+ )
953
+ self.input_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
954
+ self.post_attention_layernorm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
955
+
956
+ def forward(
957
+ self,
958
+ hidden_states: torch.Tensor,
959
+ attention_mask: Optional[torch.Tensor] = None,
960
+ position_ids: Optional[torch.LongTensor] = None,
961
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
962
+ output_attentions: Optional[bool] = False,
963
+ output_router_logits: Optional[bool] = False,
964
+ use_cache: Optional[bool] = False,
965
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
966
+ **kwargs,
967
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
968
+ """
969
+ Args:
970
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
971
+ attention_mask (`torch.FloatTensor`, *optional*):
972
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
973
+ query_sequence_length, key_sequence_length)` if default attention is used.
974
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
975
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
976
+ config.n_positions - 1]`.
977
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
978
+ cached past key and value projection states
979
+ output_attentions (`bool`, *optional*):
980
+ Whether to return the attentions tensors of all attention layers. See `attentions` under
981
+ returned tensors for more detail.
982
+ output_router_logits (`bool`, *optional*):
983
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
984
+ and should not be returned during inference.
985
+ use_cache (`bool`, *optional*):
986
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
987
+ (see `past_key_values`).
988
+ """
989
+ residual = hidden_states
990
+
991
+ hidden_states = self.input_layernorm(hidden_states)
992
+
993
+ # Self Attention
994
+ hidden_states, self_attn_weights, present_key_value = self.attention(
995
+ hidden_states=hidden_states,
996
+ attention_mask=attention_mask,
997
+ position_ids=position_ids,
998
+ past_key_value=past_key_value,
999
+ output_attentions=output_attentions,
1000
+ position_embeddings=position_embeddings,
1001
+ use_cache=use_cache,
1002
+ )
1003
+ hidden_states = residual + hidden_states
1004
+
1005
+ # Fully Connected
1006
+ residual = hidden_states
1007
+ hidden_states = self.post_attention_layernorm(hidden_states)
1008
+ hidden_states = self.mlp(hidden_states)
1009
+ if isinstance(hidden_states, tuple):
1010
+ hidden_states, router_logits = hidden_states
1011
+ else:
1012
+ router_logits = None
1013
+ hidden_states = residual + hidden_states.to(residual.device)
1014
+
1015
+ outputs = (hidden_states,)
1016
+
1017
+ if output_attentions:
1018
+ outputs += (self_attn_weights,)
1019
+
1020
+ if use_cache:
1021
+ outputs += (present_key_value,)
1022
+
1023
+ if output_router_logits:
1024
+ outputs += (router_logits,)
1025
+
1026
+ return outputs
1027
+
1028
+
1029
+ BAILINGMOEV2_START_DOCSTRING = r"""
1030
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1031
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1032
+ etc.)
1033
+
1034
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1035
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1036
+ and behavior.
1037
+
1038
+ Parameters:
1039
+ config ([`BailingMoeV2Config`]):
1040
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1041
+ load the weights associated with the model, only the configuration. Check out the
1042
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1043
+ """
1044
+
1045
+
1046
+ @add_start_docstrings(
1047
+ "The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
1048
+ BAILINGMOEV2_START_DOCSTRING,
1049
+ )
1050
+ class BailingMoeV2PreTrainedModel(PreTrainedModel):
1051
+ config_class = BailingMoeV2Config
1052
+ base_model_prefix = "model"
1053
+ supports_gradient_checkpointing = True
1054
+ _no_split_modules = ["BailingMoeV2DecoderLayer"]
1055
+ _skip_keys_device_placement = "past_key_values"
1056
+ _supports_flash_attn_2 = True
1057
+ _supports_sdpa = True
1058
+ _supports_cache_class = True
1059
+
1060
+ def _init_weights(self, module):
1061
+ std = self.config.initializer_range
1062
+ if isinstance(module, nn.Linear):
1063
+ module.weight.data.normal_(mean=0.0, std=std)
1064
+ if module.bias is not None:
1065
+ module.bias.data.zero_()
1066
+ elif isinstance(module, nn.Embedding):
1067
+ module.weight.data.normal_(mean=0.0, std=std)
1068
+ if module.padding_idx is not None:
1069
+ module.weight.data[module.padding_idx].zero_()
1070
+
1071
+
1072
+ BAILINGMOEV2_INPUTS_DOCSTRING = r"""
1073
+ Args:
1074
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1075
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1076
+ it.
1077
+
1078
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1079
+ [`PreTrainedTokenizer.__call__`] for details.
1080
+
1081
+ [What are input IDs?](../glossary#input-ids)
1082
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1083
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1084
+
1085
+ - 1 for tokens that are **not masked**,
1086
+ - 0 for tokens that are **masked**.
1087
+
1088
+ [What are attention masks?](../glossary#attention-mask)
1089
+
1090
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1091
+ [`PreTrainedTokenizer.__call__`] for details.
1092
+
1093
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1094
+ `past_key_values`).
1095
+
1096
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1097
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1098
+ information on the default strategy.
1099
+
1100
+ - 1 indicates the head is **not masked**,
1101
+ - 0 indicates the head is **masked**.
1102
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1103
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1104
+ config.n_positions - 1]`.
1105
+
1106
+ [What are position IDs?](../glossary#position-ids)
1107
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1108
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1109
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1110
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1111
+
1112
+ Two formats are allowed:
1113
+ - a [`~cache_utils.Cache`] instance;
1114
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1115
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1116
+ cache format.
1117
+
1118
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1119
+ legacy cache format will be returned.
1120
+
1121
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1122
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1123
+ of shape `(batch_size, sequence_length)`.
1124
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1125
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1126
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1127
+ model's internal embedding lookup matrix.
1128
+ use_cache (`bool`, *optional*):
1129
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1130
+ `past_key_values`).
1131
+ output_attentions (`bool`, *optional*):
1132
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1133
+ tensors for more detail.
1134
+ output_hidden_states (`bool`, *optional*):
1135
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1136
+ more detail.
1137
+ return_dict (`bool`, *optional*):
1138
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1139
+ """
1140
+
1141
+
1142
+ @add_start_docstrings(
1143
+ "The bare BailingMoeV2 Model outputting raw hidden-states without any specific head on top.",
1144
+ BAILINGMOEV2_START_DOCSTRING,
1145
+ )
1146
+ class BailingMoeV2Model(BailingMoeV2PreTrainedModel):
1147
+ """
1148
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BailingMoeV2DecoderLayer`]
1149
+
1150
+ Args:
1151
+ config: BailingMoeV2Config
1152
+ """
1153
+
1154
+ def __init__(self, config: BailingMoeV2Config):
1155
+ super().__init__(config)
1156
+ self.padding_idx = config.pad_token_id
1157
+ self.vocab_size = config.vocab_size
1158
+ self.num_nextn_predict_layers = config.num_nextn_predict_layers
1159
+
1160
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1161
+ self.layers = []
1162
+ for layer_idx in range(config.num_hidden_layers + config.num_nextn_predict_layers):
1163
+ layer_cls = BailingMoeV2DecoderLayer if layer_idx < config.num_hidden_layers else BailingMoeV2MTPLayer
1164
+ self.layers.append(layer_cls(config, layer_idx))
1165
+
1166
+ self.layers = nn.ModuleList(self.layers)
1167
+
1168
+ self._use_sdpa = config._attn_implementation == "sdpa"
1169
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1170
+ self.norm = BailingMoeV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1171
+ self.rotary_emb = BailingMoeV2RotaryEmbedding(config=config)
1172
+ self.gradient_checkpointing = False
1173
+ # Initialize weights and apply final processing
1174
+ self.post_init()
1175
+
1176
+ def get_input_embeddings(self):
1177
+ return self.word_embeddings
1178
+
1179
+ def set_input_embeddings(self, value):
1180
+ self.word_embeddings = value
1181
+
1182
+ @add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
1183
+ def forward(
1184
+ self,
1185
+ input_ids: torch.LongTensor = None,
1186
+ attention_mask: Optional[torch.Tensor] = None,
1187
+ position_ids: Optional[torch.LongTensor] = None,
1188
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1189
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1190
+ use_cache: Optional[bool] = None,
1191
+ output_attentions: Optional[bool] = None,
1192
+ output_hidden_states: Optional[bool] = None,
1193
+ output_router_logits: Optional[bool] = None,
1194
+ return_dict: Optional[bool] = None,
1195
+ **kwargs,
1196
+ ) -> Union[Tuple, MoeV2ModelOutputWithPast]:
1197
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1198
+ output_hidden_states = (
1199
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1200
+ )
1201
+ output_router_logits = (
1202
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1203
+ )
1204
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1205
+
1206
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1207
+
1208
+ # retrieve input_ids and inputs_embeds
1209
+ if input_ids is not None and inputs_embeds is not None:
1210
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1211
+ elif input_ids is not None:
1212
+ batch_size, seq_length = input_ids.shape[:2]
1213
+ elif inputs_embeds is not None:
1214
+ batch_size, seq_length = inputs_embeds.shape[:2]
1215
+ else:
1216
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1217
+
1218
+ if self.gradient_checkpointing and self.training:
1219
+ if use_cache:
1220
+ logger.warning_once(
1221
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1222
+ )
1223
+ use_cache = False
1224
+
1225
+ if use_cache and past_key_values is None:
1226
+ past_key_values = DynamicCache()
1227
+
1228
+ if inputs_embeds is None:
1229
+ inputs_embeds = self.word_embeddings(input_ids)
1230
+
1231
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1232
+
1233
+ if position_ids is None:
1234
+ position_ids = torch.arange(
1235
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1236
+ )
1237
+ position_ids = position_ids.unsqueeze(0)
1238
+
1239
+ if self._use_flash_attention_2:
1240
+ # 2d mask is passed through the layers
1241
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1242
+ elif self._use_sdpa and not output_attentions:
1243
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1244
+ # the manual implementation that requires a 4D causal mask in all cases.
1245
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1246
+ attention_mask,
1247
+ (batch_size, seq_length),
1248
+ inputs_embeds,
1249
+ past_seen_tokens,
1250
+ )
1251
+ else:
1252
+ # 4d mask is passed through the layers
1253
+ attention_mask = _prepare_4d_causal_attention_mask(
1254
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_seen_tokens
1255
+ )
1256
+
1257
+ # embed positions
1258
+ hidden_states = inputs_embeds
1259
+
1260
+ # create position embeddings to be shared across the decoder layers
1261
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1262
+
1263
+ # decoder layers
1264
+ all_hidden_states = () if output_hidden_states else None
1265
+ all_self_attns = () if output_attentions else None
1266
+ all_router_logits = () if output_router_logits else None
1267
+ next_decoder_cache = None
1268
+ layers = self.layers[: -self.num_nextn_predict_layers] if self.num_nextn_predict_layers > 0 else self.layers
1269
+ mtp_layers = self.layers[-self.num_nextn_predict_layers :] if self.num_nextn_predict_layers > 0 else None
1270
+
1271
+ for decoder_layer in layers:
1272
+ if output_hidden_states:
1273
+ all_hidden_states += (hidden_states,)
1274
+
1275
+ if self.gradient_checkpointing and self.training:
1276
+ layer_outputs = self._gradient_checkpointing_func(
1277
+ decoder_layer.__call__,
1278
+ hidden_states,
1279
+ attention_mask,
1280
+ position_ids,
1281
+ past_key_values,
1282
+ output_attentions,
1283
+ output_router_logits,
1284
+ use_cache,
1285
+ position_embeddings,
1286
+ )
1287
+ else:
1288
+ layer_outputs = decoder_layer(
1289
+ hidden_states,
1290
+ attention_mask=attention_mask,
1291
+ position_ids=position_ids,
1292
+ past_key_value=past_key_values,
1293
+ output_attentions=output_attentions,
1294
+ output_router_logits=output_router_logits,
1295
+ use_cache=use_cache,
1296
+ position_embeddings=position_embeddings,
1297
+ )
1298
+ hidden_states = layer_outputs[0]
1299
+
1300
+ if use_cache:
1301
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1302
+
1303
+ if output_attentions:
1304
+ all_self_attns += (layer_outputs[1],)
1305
+
1306
+ if output_router_logits and layer_outputs[-1] is not None:
1307
+ all_router_logits += (layer_outputs[-1],)
1308
+
1309
+ hidden_states = self.norm(hidden_states)
1310
+ main_hidden_states = hidden_states
1311
+
1312
+ # add hidden states from the last decoder layer
1313
+ if output_hidden_states:
1314
+ all_hidden_states += (main_hidden_states,)
1315
+
1316
+ mtp_hidden_states = None
1317
+
1318
+ if mtp_layers:
1319
+ for decoder_layer in mtp_layers:
1320
+ input_ids, _ = roll_tensor(input_ids, shifts=-1, dims=-1)
1321
+ inputs_embeds = self.word_embeddings(input_ids)
1322
+
1323
+ if self.gradient_checkpointing and self.training:
1324
+ layer_outputs = self._gradient_checkpointing_func(
1325
+ decoder_layer.__call__,
1326
+ inputs_embeds,
1327
+ hidden_states,
1328
+ attention_mask,
1329
+ position_ids,
1330
+ past_key_values,
1331
+ output_attentions,
1332
+ output_router_logits,
1333
+ use_cache,
1334
+ position_embeddings,
1335
+ )
1336
+ else:
1337
+ layer_outputs = decoder_layer(
1338
+ inputs_embeds,
1339
+ hidden_states,
1340
+ attention_mask=attention_mask,
1341
+ position_ids=position_ids,
1342
+ past_key_value=past_key_values,
1343
+ output_attentions=output_attentions,
1344
+ output_router_logits=output_router_logits,
1345
+ use_cache=use_cache,
1346
+ position_embeddings=position_embeddings,
1347
+ )
1348
+ if mtp_hidden_states is None:
1349
+ mtp_hidden_states = []
1350
+ hidden_states = layer_outputs[0]
1351
+ mtp_hidden_states.append(hidden_states)
1352
+
1353
+ if output_hidden_states:
1354
+ all_hidden_states += (hidden_states,)
1355
+
1356
+ if use_cache:
1357
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1358
+
1359
+ if output_attentions:
1360
+ all_self_attns += (layer_outputs[1],)
1361
+
1362
+ if output_router_logits and layer_outputs[-1] is not None:
1363
+ all_router_logits += (layer_outputs[-1],)
1364
+
1365
+ next_cache = None
1366
+ if use_cache:
1367
+ next_cache = next_decoder_cache
1368
+ if not return_dict:
1369
+ return tuple(
1370
+ v
1371
+ for v in [main_hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1372
+ if v is not None
1373
+ )
1374
+ return MoeV2ModelOutputWithPast(
1375
+ last_hidden_state=main_hidden_states,
1376
+ past_key_values=next_cache,
1377
+ hidden_states=all_hidden_states,
1378
+ mtp_hidden_states=mtp_hidden_states,
1379
+ attentions=all_self_attns,
1380
+ router_logits=all_router_logits,
1381
+ )
1382
+
1383
+
1384
+ class BailingMoeV2ForCausalLM(BailingMoeV2PreTrainedModel, GenerationMixin):
1385
+ _tied_weights_keys = ["lm_head.weight"]
1386
+
1387
+ def __init__(self, config: BailingMoeV2Config):
1388
+ super().__init__(config)
1389
+ self.model = BailingMoeV2Model(config)
1390
+ self.vocab_size = config.vocab_size
1391
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1392
+ self.num_nextn_predict_layers = config.num_nextn_predict_layers
1393
+ self.mtp_loss_scaling_factor = config.mtp_loss_scaling_factor
1394
+
1395
+ # Initialize weights and apply final processing
1396
+ self.post_init()
1397
+
1398
+ def get_input_embeddings(self):
1399
+ return self.model.word_embeddings
1400
+
1401
+ def set_input_embeddings(self, value):
1402
+ self.model.word_embeddings = value
1403
+
1404
+ def get_output_embeddings(self):
1405
+ return self.lm_head
1406
+
1407
+ def set_output_embeddings(self, new_embeddings):
1408
+ self.lm_head = new_embeddings
1409
+
1410
+ def set_decoder(self, decoder):
1411
+ self.model = decoder
1412
+
1413
+ def get_decoder(self):
1414
+ return self.model
1415
+
1416
+ @add_start_docstrings_to_model_forward(BAILINGMOEV2_INPUTS_DOCSTRING)
1417
+ @replace_return_docstrings(output_type=MoEV2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1418
+ def forward(
1419
+ self,
1420
+ input_ids: torch.LongTensor = None,
1421
+ attention_mask: Optional[torch.Tensor] = None,
1422
+ position_ids: Optional[torch.LongTensor] = None,
1423
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1424
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1425
+ labels: Optional[torch.LongTensor] = None,
1426
+ use_cache: Optional[bool] = None,
1427
+ output_attentions: Optional[bool] = None,
1428
+ output_hidden_states: Optional[bool] = None,
1429
+ output_router_logits: Optional[bool] = None,
1430
+ return_dict: Optional[bool] = None,
1431
+ **kwargs,
1432
+ ) -> Union[Tuple, MoEV2CausalLMOutputWithPast]:
1433
+ r"""
1434
+ Args:
1435
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1436
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1437
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1438
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1439
+
1440
+ Returns:
1441
+
1442
+ Example:
1443
+
1444
+ ```python
1445
+ >>> from transformers import AutoTokenizer
1446
+
1447
+ >>> model = BailingMoeV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1448
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1449
+
1450
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1451
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1452
+
1453
+ >>> # Generate
1454
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1455
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1456
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1457
+ ```"""
1458
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1459
+ output_hidden_states = (
1460
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1461
+ )
1462
+ output_router_logits = (
1463
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1464
+ )
1465
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1466
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1467
+ outputs = self.model(
1468
+ input_ids=input_ids,
1469
+ attention_mask=attention_mask,
1470
+ position_ids=position_ids,
1471
+ past_key_values=past_key_values,
1472
+ inputs_embeds=inputs_embeds,
1473
+ use_cache=use_cache,
1474
+ output_attentions=output_attentions,
1475
+ output_hidden_states=output_hidden_states,
1476
+ output_router_logits=output_router_logits,
1477
+ return_dict=return_dict,
1478
+ **kwargs,
1479
+ )
1480
+
1481
+ loss = None
1482
+ all_mtp_loss = None
1483
+ aux_loss = None
1484
+ hidden_states = outputs[0]
1485
+ logits = self.lm_head(hidden_states)
1486
+ logits = logits.float()
1487
+
1488
+ if labels is not None:
1489
+ loss = self.loss_function(logits, labels, self.config.vocab_size, **kwargs)
1490
+
1491
+ all_mtp_logits = None
1492
+ if self.num_nextn_predict_layers > 0:
1493
+ mtp_hidden_states = outputs.mtp_hidden_states
1494
+ shift_labels_mtp = None
1495
+ for i in range(self.num_nextn_predict_layers):
1496
+ mtp_hidden_states = mtp_hidden_states[i]
1497
+ mtp_logits = self.lm_head(mtp_hidden_states).float()
1498
+ if all_mtp_logits is None:
1499
+ all_mtp_logits = []
1500
+ all_mtp_logits.append(mtp_logits)
1501
+ if labels is not None:
1502
+ if shift_labels_mtp is None:
1503
+ shift_labels_mtp = labels.clone()
1504
+ shift_labels_mtp, _ = roll_tensor(shift_labels_mtp, shifts=-1, dims=-1, fill_value=-100)
1505
+ mtp_logits_ = mtp_logits.view(-1, self.config.vocab_size)
1506
+ mtp_loss = self.loss_function(mtp_logits_, shift_labels_mtp.to(mtp_logits_.device).view(-1), self.config.vocab_size, **kwargs)
1507
+ if loss is not None:
1508
+ loss += self.mtp_loss_scaling_factor * mtp_loss
1509
+ else:
1510
+ loss = self.mtp_loss_scaling_factor * mtp_loss
1511
+
1512
+ if all_mtp_loss is None:
1513
+ all_mtp_loss = []
1514
+ all_mtp_loss.append(mtp_loss)
1515
+
1516
+ if not return_dict:
1517
+ output = (logits,) + outputs[1:]
1518
+ if output_router_logits:
1519
+ output = (aux_loss,) + output
1520
+ return (loss,) + output if loss is not None else output
1521
+
1522
+ return MoEV2CausalLMOutputWithPast(
1523
+ loss=loss,
1524
+ mtp_loss=all_mtp_loss,
1525
+ aux_loss=aux_loss,
1526
+ logits=logits,
1527
+ mtp_logits=all_mtp_logits,
1528
+ past_key_values=outputs.past_key_values,
1529
+ hidden_states=outputs.hidden_states,
1530
+ attentions=outputs.attentions,
1531
+ router_logits=outputs.router_logits,
1532
+ )
1533
+
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|startoftext|>",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "<|role_end|>",
5
+ "gmask_token": "[gMASK]",
6
+ "pad_token": "<|endoftext|>"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "bos_token": "<|startoftext|>",
5
+ "chat_template": "{% set thinking_option = 'off' %}\n{{- '<role>SYSTEM</role>' }}\n{%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n' }}\n{%- endif %}\n{%- if tools %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call>\\n\" }}\n{%- endif %}\n{{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if message.role == \"user\" %}\n {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"system\" and not loop.first %}\n {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if reasoning_content %}\n {{- '<role>ASSISTANT</role>' + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|role_end|>' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<role>OBSERVATION</role>' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|role_end|>' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<role>ASSISTANT</role>' }}\n{%- endif %}",
6
+ "clean_up_tokenization_spaces": false,
7
+ "cls_token": "[CLS]",
8
+ "eos_token": "<|role_end|>",
9
+ "fast_tokenizer": true,
10
+ "gmask_token": "[gMASK]",
11
+ "merges_file": null,
12
+ "model_max_length": 1000000000000000019884624838656,
13
+ "pad_token": "<|endoftext|>",
14
+ "tokenizer_class": "PreTrainedTokenizerFast",
15
+ "trust_remote_code": true,
16
+ "vocab_file": null
17
+ }