--- license: mit base_model: - inclusionAI/Ling-mini-base-2.0 pipeline_tag: text-generation library_name: transformers ---

🤗 Hugging Face   |   ðŸ¤– ModelScope

## Introduction Today, we are excited to announce the open-sourcing of __Ling 2.0__ — a family of MoE-based large language models that combine __SOTA performance__ with __high efficiency__. The first released version, Ling-mini-2.0, is compact yet powerful. It has __16B total parameters__, but only __1.4B__ are activated per input token (non-embedding 789M). Trained on more than __20T tokens__ of high-quality data and enhanced through multi-stage supervised fine-tuning and reinforcement learning, Ling-mini-2.0 achieves remarkable improvements in complex reasoning and instruction following. With just 1.4B activated parameters, it still reaches the top-tier level of sub-10B dense LLMs and even matches or surpasses much larger MoE models.

### Strong General and Professional Reasoning We evaluated Ling-mini-2.0 on challenging general reasoning tasks in coding (LiveCodeBench, CodeForces) and mathematics (AIME 2025, HMMT 2025), as well as knowledge-intensive reasoning tasks across multiple domains (MMLU-Pro, Humanity's Last Exam). Compared with sub-10B dense models (e.g., Qwen3-4B-instruct-2507, Qwen3-8B-nothinking) and larger-scale MoE models (Ernie-4.5-21B-A3B-PT, GPT-OSS-20B/low), Ling-mini-2.0 demonstrated outstanding overall reasoning capabilities. ### 7× Equivalent Dense Performance Leverage Guided by [Ling Scaling Laws](https://arxiv.org/abs/2507.17702), Ling 2.0 adopts a __1/32 activation ratio__ MoE architecture, with empirically optimized design choices in expert granularity, shared expert ratio, attention ratio, aux-loss free + sigmoid routing strategy, MTP loss, QK-Norm, half RoPE, and more. This enables small-activation MoE models to achieve over __7× equivalent dense performance__. In other words, __Ling-mini-2.0 with only 1.4B activated parameters (non-embedding 789M) can deliver performance equivalent to a 7–8B dense model__. ### High-speed Generation at 300+ token/s

The highly sparse small-activation MoE architecture also delivers significant training and inference efficiency. In simple QA scenarios (within 2000 tokens), __Ling-mini-2.0 generates at 300+ token/s (on H20 deployment)__ — more than __2× faster__ than an 8B dense model. Ling-mini-2.0 is able to handle __128K context length__ with YaRN, as sequence length increases, the relative speedup can reach __over 7×__.

### Open-sourced FP8 Efficient Training Solution Ling 2.0 employs __FP8 mixed-precision training__ throughout. Compared with BF16, experiments with over 1T training tokens show nearly identical loss curves and downstream benchmark performance. To support the community in efficient continued pretraining and fine-tuning under limited compute, we are also open-sourcing our __FP8 training solution__. Based on tile/blockwise FP8 scaling, it further introduces FP8 optimizer, FP8 on-demand transpose weight, and FP8 padding routing map for extreme memory optimization. On 8/16/32 80G GPUs, compared with LLaMA 3.1 8B and Qwen3 8B, __Ling-mini-2.0 achieved 30–60% throughput gains with MTP enabled, and 90–120% throughput gains with MTP disabled__. ### A More Open Opensource Strategy We believe Ling-mini-2.0 is an ideal starting point for MoE research. For the first time at this scale, it integrates 1/32 sparsity, MTP layers, and FP8 training — achieving both strong effectiveness and efficient training/inference performance, making it a prime candidate for the small-size LLM segment. To further foster community research, in addition to releasing the post-trained version, we are also open-sourcing __five pretraining checkpoints__: the pre-finetuning Ling-mini-2.0-base, along with four base models trained on 5T, 10T, 15T, and 20T tokens, enabling deeper research and broader applications. ## Model Downloads You can download the following table to see the various stage of Ling-mini-2.0 models(1.43B activated of 16.26B total params). If you are located in mainland China, we also provide the model on ModelScope.cn to speed up the download process.
| **Model** | **Context Length** | **Download** | |:----------------------:| :----------------: |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | Ling-mini-base-2.0 | 32K -> 128K (YaRN) | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0) | | Ling-mini-base-2.0-5T | 4K | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-5T)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-5T) | | Ling-mini-base-2.0-10T | 4K | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-10T)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-10T) | | Ling-mini-base-2.0-15T | 4K | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-15T)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-15T) | | Ling-mini-base-2.0-20T | 4K | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-base-2.0-20T)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-base-2.0-20T) | | Ling-mini-2.0 | 32K -> 128K (YaRN) | [🤗 HuggingFace](https://huggingface.co/inclusionAI/Ling-mini-2.0)
[🤖 ModelScope](https://www.modelscope.cn/models/inclusionAI/Ling-mini-2.0) |
Note: If you are interested in previous version, please visit the past model collections in [Huggingface](https://huggingface.co/inclusionAI) or [ModelScope](https://modelscope.cn/organization/inclusionAI). ## Quickstart ### Convert to safetensors Models with safetensors format can be downloaded from [HuggingFace](https://huggingface.co/inclusionAI) or [ModelScope](https://modelscope.cn/organization/inclusionAI). If you want to train your model and eval it, you can convert from dcp produced by training. ```shell python tools/convert_dcp_to_safe_tensors.py --checkpoint-path ${DCP_PATH} --target-path ${SAFETENSORS_PATH} ``` Currently, BF16 and FP8 formats are supported, you can use convert parameter to handle it: - `--force-bf16` for BF16 format. - `--force-fp8` for FP8 format. ### 🤗 Hugging Face Transformers Here is a code snippet to show you how to use the chat model with `transformers`: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "inclusionAI/Ling-mini-2.0" model = AutoModelForCausalLM.from_pretrained( model_name, dtype="auto", device_map="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language models." messages = [ {"role": "system", "content": "You are Ling, an assistant created by inclusionAI"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt", return_token_type_ids=False).to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### 🤖 ModelScope If you're in mainland China, we strongly recommend you to use our model from 🤖 ModelScope. ## Deployment ### vLLM vLLM supports offline batched inference or launching an OpenAI-Compatible API Service for online inference. #### Environment Preparation Since the Pull Request (PR) has not been submitted to the vLLM community at this stage, please prepare the environment by following the steps below: ```bash git clone -b v0.10.0 https://github.com/vllm-project/vllm.git cd vllm git apply Ling-V2/inference/vllm/bailing_moe_v2.patch pip install -e . ``` #### Offline Inference: ```bash from transformers import AutoTokenizer from vllm import LLM, SamplingParams tokenizer = AutoTokenizer.from_pretrained("inclusionAI/Ling-mini-2.0") sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=16384) llm = LLM(model="inclusionAI/Ling-mini-2.0", dtype='bfloat16') prompt = "Give me a short introduction to large language models." messages = [ {"role": "system", "content": "You are Ling, an assistant created by inclusionAI"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = llm.generate([text], sampling_params) ``` #### Online Inference: ```bash vllm serve inclusionAI/Ling-mini-2.0 \ --tensor-parallel-size 2 \ --pipeline-parallel-size 1 \ --use-v2-block-manager \ --gpu-memory-utilization 0.90 ``` To handle long context in vLLM using YaRN, we need to follow these two steps: 1. Add a `rope_scaling` field to the model's `config.json` file, for example: ```json { ..., "rope_scaling": { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } } ``` 2. Use an additional parameter `--max-model-len` to specify the desired maximum context length when starting the vLLM service. For detailed guidance, please refer to the vLLM [`instructions`](https://docs.vllm.ai/en/latest/). ### SGLang #### Environment Preparation We will later submit our model to SGLang official release, now we can prepare the environment following steps: ```shell pip3 install sglang==0.5.2rc0 sgl-kernel==0.3.7.post1 ``` You can use docker image as well: ```shell docker pull lmsysorg/sglang:v0.5.2rc0-cu126 ``` Then you should apply patch to sglang installation: ```shell # patch command is needed, run `yum install -y patch` if needed patch -d `python -c 'import sglang;import os; print(os.path.dirname(sglang.__file__))'` -p3 < inference/sglang/bailing_moe_v2.patch ``` #### Run Inference BF16 and FP8 models are supported by SGLang now, it depends on the dtype of the model in ${MODEL_PATH}. They both share the same command in the following: - Start server: ```shell python -m sglang.launch_server \ --model-path $MODLE_PATH \ --host 0.0.0.0 --port $PORT \ --trust-remote-code \ --attention-backend fa3 ``` MTP is supported for base model, and not yet for chat model. You can add parameter `--speculative-algorithm NEXTN` to start command. - Client: ```shell curl -s http://localhost:${PORT}/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{"model": "auto", "messages": [{"role": "user", "content": "What is the capital of France?"}]}' """ ``` More usage can be found [here](https://docs.sglang.ai/basic_usage/send_request.html) ## Training We also provide a complete and efficient training framework that covers both pre-training and finetune. Based on this framework, continue training can be performed on the Ling-mini-2.0 checkpoint. With our training framework, the training throughput of the Ling-mini-2.0 model is significantly better than that of the existing Dense 8B model (Qwen3-8B, Llama3-8B). ### Pre-training [Pretraining demo](https://github.com/inclusionAI/Ling-V2/blob/main/docs/gpu_based_training.md) to Continue pretraining Ling models. #### Performance Benchmark The table below shows the pre-training performance of several models, measured in **tokens per second** on 8, 16, and 32 80G GPUs. Ling-mini-2.0 achieves significantly higher training efficiency compared to the baseline, making it easier and more cost-effective to continue pre-training with our [demo scripts](https://github.com/inclusionAI/Ling-V2/blob/main/docs/gpu_based_training.md).
| **Model** | **8 x 80G GPUs (GBS=128)** | **16 x 80G GPUs (GBS=256)** | **32 x 80G GPUs (GBS=512)** | |:-----------------------:| :--------------------: | :---------------------: | :---------------------: | | LLaMA 3.1 8B (baseline) | 81222 | 161319 | 321403 | | Qwen3 8B | 55775 (-31.33%) | 109799 (-31.94%) | 219943 (-31.57%) | | Ling-mini-2.0 | 109532 (+34.86%) | 221585 (+37.36%) | 448726 (+39.61%) | | Ling-mini-2.0 w/o MTP | 128298 (+57.96%) | 307264 (+90.47%) | 611466 (+90.25%) |
### Finetuning We recommend you to use [Llama-Factory](https://github.com/hiyouga/LLaMA-Factory) to [finetune Ling](https://github.com/inclusionAI/Ling-V2/blob/main/docs/llamafactory_finetuning.md). In addition to that, you can also use [Megatron for finetuning](https://github.com/inclusionAI/Ling-V2/blob/main/docs/megatron_sft_training.md). ## License This code repository is licensed under [the MIT License](https://github.com/inclusionAI/Ling-V2/blob/master/LICENCE). ## Citation If you find our work helpful, feel free to give us a cite. ``` ```