Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -6778,10 +6778,7 @@ license: mit | |
| 6778 |  | 
| 6779 | 
             
            ## Multilingual-E5-base
         | 
| 6780 |  | 
| 6781 | 
            -
            [Text Embeddings  | 
| 6782 | 
            -
            Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
         | 
| 6783 | 
            -
             | 
| 6784 | 
            -
            [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/abs/2402.05672).
         | 
| 6785 | 
             
            Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024
         | 
| 6786 |  | 
| 6787 | 
             
            This model has 12 layers and the embedding size is 768.
         | 
| @@ -6869,7 +6866,7 @@ but low-resource languages may see performance degradation. | |
| 6869 |  | 
| 6870 | 
             
            For all labeled datasets, we only use its training set for fine-tuning.
         | 
| 6871 |  | 
| 6872 | 
            -
            For other training details, please refer to our paper at [https://arxiv.org/pdf/ | 
| 6873 |  | 
| 6874 | 
             
            ## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787)
         | 
| 6875 |  | 
| @@ -6939,11 +6936,11 @@ so this should not be an issue. | |
| 6939 | 
             
            If you find our paper or models helpful, please consider cite as follows:
         | 
| 6940 |  | 
| 6941 | 
             
            ```
         | 
| 6942 | 
            -
            @article{ | 
| 6943 | 
            -
              title={Text Embeddings  | 
| 6944 | 
            -
              author={Wang, Liang and Yang, Nan and Huang, Xiaolong and  | 
| 6945 | 
            -
              journal={arXiv preprint arXiv: | 
| 6946 | 
            -
              year={ | 
| 6947 | 
             
            }
         | 
| 6948 | 
             
            ```
         | 
| 6949 |  | 
|  | |
| 6778 |  | 
| 6779 | 
             
            ## Multilingual-E5-base
         | 
| 6780 |  | 
| 6781 | 
            +
            [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672).
         | 
|  | |
|  | |
|  | |
| 6782 | 
             
            Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024
         | 
| 6783 |  | 
| 6784 | 
             
            This model has 12 layers and the embedding size is 768.
         | 
|  | |
| 6866 |  | 
| 6867 | 
             
            For all labeled datasets, we only use its training set for fine-tuning.
         | 
| 6868 |  | 
| 6869 | 
            +
            For other training details, please refer to our paper at [https://arxiv.org/pdf/2402.05672](https://arxiv.org/pdf/2402.05672).
         | 
| 6870 |  | 
| 6871 | 
             
            ## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787)
         | 
| 6872 |  | 
|  | |
| 6936 | 
             
            If you find our paper or models helpful, please consider cite as follows:
         | 
| 6937 |  | 
| 6938 | 
             
            ```
         | 
| 6939 | 
            +
            @article{wang2024multilingual,
         | 
| 6940 | 
            +
              title={Multilingual E5 Text Embeddings: A Technical Report},
         | 
| 6941 | 
            +
              author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
         | 
| 6942 | 
            +
              journal={arXiv preprint arXiv:2402.05672},
         | 
| 6943 | 
            +
              year={2024}
         | 
| 6944 | 
             
            }
         | 
| 6945 | 
             
            ```
         | 
| 6946 |  |