File size: 1,295 Bytes
0da0942
 
 
 
 
 
 
 
 
 
 
 
0f3c588
 
25f47b4
 
0da0942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b6a56
 
 
 
 
 
 
 
 
 
 
 
0da0942
 
79b6a56
49d414b
0da0942
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
base_model: stable-diffusion-v1-5/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
- diffusers-training
language:
- en
datasets:
- diffusers/cat_toy_example
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# Textual inversion text2image fine-tuning - intipendrdra/textual_inversion_cat
These are textual inversion adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. You can find some example images in the following. 




## Intended uses & limitations

#### How to use

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe.load_textual_inversion("intipendrdra/textual_inversion_cat")

prompt = "a <cat> sitting on a sofa, highly detailed, 4k"
image = pipe(prompt).images[0]

image.show()

image.save("cat.png")

```


#### Limitations and bias 

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]