File size: 3,001 Bytes
6e4d7f6
 
 
 
 
e6199b0
6e4d7f6
 
ced168c
 
e2c9bc8
ced168c
 
 
 
 
 
 
9c7c371
ced168c
9c7c371
ced168c
 
 
1d1e5fa
ced168c
9c7c371
ced168c
9c7c371
8ec353c
1d1e5fa
ced168c
9c7c371
1413e3d
9c7c371
1040520
ced168c
 
aeba0e2
 
9c7c371
aeba0e2
 
 
 
 
ef40738
aeba0e2
 
 
 
 
 
 
 
 
c26e036
aeba0e2
 
 
 
dd36c32
ced168c
 
 
65f37cc
 
 
 
 
ced168c
 
 
 
9c7c371
ced168c
 
 
 
f2b4394
ced168c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
language:
- en
base_model:
- Menlo/Jan-edge
pipeline_tag: text-generation
library_name: transformers
---

# Jan-v1-edge: Distilled for Edge, Built for Web Search

[![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research)
[![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://opensource.org/licenses/Apache-2.0)
[![Jan App](https://img.shields.io/badge/Powered%20by-Jan%20App-purple?style=flat&logo=android)](https://jan.ai/)

## Overview

**Jan-v1-edge** is a lightweight agentic model built for fast, reliable on-device execution. As the second release in the **Jan Family**, it is distilled from the larger [`Jan-v1`](https://huggingface.co/janhq/Jan-v1-4B) model, preserving strong reasoning and problem-solving ability in a smaller footprint suitable for resource-constrained environments.

Jan-v1-edge was developed through a two-phase post-training process. The first phase, **Supervised Fine-Tuning (SFT)**, transferred core capabilities from the `Jan-v1` teacher model to the smaller student. The second phase, **Reinforcement Learning with Verifiable Rewards (RLVR)** —the same method used in `Jan-v1` and `Lucy`—further optimized reasoning efficiency, tool use, and correctness. This staged approach delivers reliable results on complex, interactive workloads.

## Performance

### Question Answering(SimpleQA)

Despite having only 1.7B parameters, **Jan-v1-edge** achieves 83% accuracy—nearly matching the larger Jan-nano-128k—demonstrating its efficiency and robustness.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/655e3b59d5c0d3db5359ca3c/gV6Ph1m3rW6KeYkpj_b4s.png)

### Chat & Instruction Following

![image/png](https://cdn-uploads.huggingface.co/production/uploads/655e3b59d5c0d3db5359ca3c/xNWL41L__oULHJkuAaGGt.png)

Versus Qwen 3 1.7B Thinking, Jan-v1-edge shows a slight degradation on instruction-following and CreativeWriting, while remaining comparable or better on EQBench and recency QA.

## Quick Start

### Integration with Jan App

Jan-v1-edge is optimized for direct integration with the [Jan App](https://jan.ai/). Simply select the model from the Jan App interface for immediate access to its full capabilities.

### Local Deployment

**Using vLLM:**
```bash
vllm serve janhq/Jan-v1-edge \
    --host 0.0.0.0 \
    --port 1234 \
    --enable-auto-tool-choice \
    --tool-call-parser hermes
    
```

**Using llama.cpp:**
```bash
llama-server --model Jan-v1-edge-Q8_0.gguf \
    --host 0.0.0.0 \
    --port 1234 \
    --jinja \
    --no-context-shift
```

### Recommended Inference Parameters
```yaml
temperature: 0.6
top_p: 0.95
top_k: 20
min_p: 0.0
max_tokens: 2048
```

## 🤝 Community & Support

-   **Discussions**: [HuggingFace Community](https://huggingface.co/janhq/Jan-v1-edge/discussions)
-   **Jan App**: Discover more about the Jan App at [jan.ai](https://jan.ai/)

## 📄 Citation
```bibtex
Updated Soon
```