--- license: mit language: - en pipeline_tag: fill-mask --- # Ettin: an Open Suite of Paired Encoders and Decoders [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Paper](https://img.shields.io/badge/Paper-Coming%20Soon-red)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) [![Models](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-12%20Models-blue)](https://huggingface.co/jhu-clsp) [![Data](https://img.shields.io/badge/πŸ€—%20Training%20Data-2T%20Tokens-green)](https://huggingface.co/datasets/jhu-clsp) [![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) > 🎯 **TL;DR**: State-of-the-art paired encoder and decoder models (17M-1B params) trained identically for fair comparison with open data. Encoders beat ModernBERT. Decoders beat Llama 3.2/SmolLM2. πŸ“„ [Paper (Coming Soon)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) | πŸš€ [GitHub Repository](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) This model is part of the Ettin suite - the first collection of paired encoder-only and decoder-only models trained with identical data, architecture, and training recipes. Ettin enables fair comparisons between encoder and decoder architectures across multiple scales, providing state-of-the-art performance for open-data models in their respective size categories. ## Table of Contents - [Performance Highlights](#performance-highlights) - [Quick Start](#quick-start) - [Model Description](#model-description) - [Training Data](#training-data) - [Model Family](#model-family) - [Encoder Models](#encoder-models) - [Decoder Models](#decoder-models) - [Cross-Objective Models](#cross-objective-models) - [Accessing Training Checkpoints](#accessing-training-checkpoints) - [Usage Examples](#usage-examples) - [Research Applications](#research-applications) - [Training Details](#training-details) - [Model Architecture](#model-architecture) - [Citation](#citation) ## πŸ“Š Performance Highlights ### Encoder Tasks (vs. ModernBERT) - **GLUE Average**: 88.9 vs 88.4 (Base), 90.8 vs 90.4 (Large) - **MTEB v2 English Retrieval**: 45.7 vs 43.9 (Base), 48.4 vs 47.0 (Large) - **Code Search and Long Context**: Superior performance on CodeSearchNet and MLDR ### Decoder Tasks (vs. SmolLM2 & Llama 3.2) - **Average Score**: 46.2 vs 45.2 (SmolLM2-135M) - **1B Model**: 59.0 vs 56.6 (Llama 3.2-1B) - **Generative Tasks**: Competitive across all model sizes ### Key Finding **Architecture-specific advantages persist**: A 400M encoder outperforms a 1B decoder on classification tasks, while a 400M decoder outperforms a 1B encoder on generation tasks. ## πŸš€ Quick Start ### Installation ```bash pip install torch>=1.9.0 transformers>=4.21.0 ``` ### 30-Second Examples **Encoder for Classification/Embeddings:** ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-150m") model = AutoModel.from_pretrained("jhu-clsp/ettin-encoder-150m") ``` **Decoder for Text Generation:** ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-150m") model = AutoModelForCausalLM.from_pretrained("jhu-clsp/ettin-decoder-150m") ``` ## Model Description Ettin models are designed to provide a foundation for comparing encoder-only and decoder-only architectures. Unlike previous comparisons that were limited by different training data, architectures, and recipes, Ettin models use: 1. **Identical training data** - Same high-quality mixture across all models 2. **Open Training Data** - Data is available now with batch-level training data for each of the 250+ checkpoints 3. **Matched architectures** - Only differing in attention patterns (bidirectional vs causal) and training objectives (MLM vs CLM) 4. **Consistent training recipe** - Three-phase training with 2T tokens 5. **Multiple scales** - From 17M to 1B parameters This approach allows for true apples-to-apples comparisons between encoder and decoder models, revealing the inherent strengths of each architecture. ## Training Data The training data is publicly available and split across different phases: - **Pre-training Data**: [jhu-clsp/ettin-pretraining-data](https://huggingface.co/datasets/jhu-clsp/ettin-pretraining-data) - 1.7T tokens of diverse data mixture - **Mid-training/Extension Data**: [jhu-clsp/ettin-extension-data](https://huggingface.co/datasets/jhu-clsp/ettin-extension-data) - 250B tokens of higher-quality filtered data - **Decay Phase Data**: [jhu-clsp/ettin-decay-data](https://huggingface.co/datasets/jhu-clsp/ettin-decay-data) - 100B tokens of premium data sources - **Training Data Order**: [jhu-clsp/ettin-data-order](https://huggingface.co/datasets/jhu-clsp/ettin-data-order) - Batch-level training order (columns: input_ids, step) ## Model Family ### Encoder Models | Size | Model | Parameters | Best For | Download | |:-----|:------|:-----------|:---------|:---------| | XXS | [ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) | 17M | Mobile/Edge devices | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-17m) | | XS | [ettin-encoder-32m](https://huggingface.co/jhu-clsp/ettin-encoder-32m) | 32M | Fast inference | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-32m) | | Small | [ettin-encoder-68m](https://huggingface.co/jhu-clsp/ettin-encoder-68m) | 68M | Balanced performance | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-68m) | | Base | [ettin-encoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-150m) | 150M | Standard use cases | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-150m) | | Large | [ettin-encoder-400m](https://huggingface.co/jhu-clsp/ettin-encoder-400m) | 400M | High accuracy needs | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-400m) | | XL | [ettin-encoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-1b) | 1B | Best performance | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-1b) | ### Decoder Models | Size | Model | Parameters | Best For | Download | |:-----|:------|:-----------|:---------|:---------| | XXS | [ettin-decoder-17m](https://huggingface.co/jhu-clsp/ettin-decoder-17m) | 17M | Lightweight generation | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-17m) | | XS | [ettin-decoder-32m](https://huggingface.co/jhu-clsp/ettin-decoder-32m) | 32M | Quick prototyping | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-32m) | | Small | [ettin-decoder-68m](https://huggingface.co/jhu-clsp/ettin-decoder-68m) | 68M | Efficient generation | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-68m) | | Base | [ettin-decoder-150m](https://huggingface.co/jhu-clsp/ettin-decoder-150m) | 150M | Standard generation | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-150m) | | Large | [ettin-decoder-400m](https://huggingface.co/jhu-clsp/ettin-decoder-400m) | 400M | Quality generation | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-400m) | | XL | [ettin-decoder-1b](https://huggingface.co/jhu-clsp/ettin-decoder-1b) | 1B | Best generation | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-1b) | ### Cross-Objective Models These models demonstrate what happens when you continue training encoders as decoders (and vice versa). **Important**: Load these models using the architecture they were *converted to*, not their original architecture. #### Encoders Trained from Decoders (Decoder β†’ MLM) **Load as encoders** using `AutoModel` or `AutoModelForMaskedLM`: | Size | Model | Parameters | Description | Download | |:-----|:------|:-----------|:------------|:---------| | XXS | [ettin-encoder-from-decoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-17m) | 17M | Decoder β†’ MLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-17m) | | XS | [ettin-encoder-from-decoder-32m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-32m) | 32M | Decoder β†’ MLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-32m) | | Small | [ettin-encoder-from-decoder-68m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-68m) | 68M | Decoder β†’ MLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-68m) | | Base | [ettin-encoder-from-decoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-150m) | 150M | Decoder β†’ MLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-150m) | | Large | [ettin-encoder-from-decoder-400m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-400m) | 400M | Decoder β†’ MLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-400m) | | XL | [ettin-encoder-from-decoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-1b) | 1B | Decoder β†’ MLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-1b) | #### Decoders Trained from Encoders (Encoder β†’ CLM) **Load as decoders** using `AutoModelForCausalLM`: | Size | Model | Parameters | Description | Download | |:-----|:------|:-----------|:------------|:---------| | XXS | [ettin-decoder-from-encoder-17m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-17m) | 17M | Encoder β†’ CLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-17m) | | XS | [ettin-decoder-from-encoder-32m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-32m) | 32M | Encoder β†’ CLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-32m) | | Small | [ettin-decoder-from-encoder-68m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-68m) | 68M | Encoder β†’ CLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-68m) | | Base | [ettin-decoder-from-encoder-150m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-150m) | 150M | Encoder β†’ CLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-150m) | | Large | [ettin-decoder-from-encoder-400m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-400m) | 400M | Encoder β†’ CLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-400m) | | XL | [ettin-decoder-from-encoder-1b](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-1b) | 1B | Encoder β†’ CLM continued training | [![Download](https://img.shields.io/badge/πŸ€—-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-1b) | **Example Usage for Cross-Objective Models:** ```python # Encoder-from-decoder: Load as encoder from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-from-decoder-150m") model = AutoModel.from_pretrained("jhu-clsp/ettin-encoder-from-decoder-150m") # Decoder-from-encoder: Load as decoder from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-from-encoder-150m") model = AutoModelForCausalLM.from_pretrained("jhu-clsp/ettin-decoder-from-encoder-150m") ``` ## Accessing Training Checkpoints Beyond the final models listed above, we provide access to intermediate training checkpoints for research and analysis purposes. These checkpoints allow you to study model behavior and performance throughout the training process. You can get the checkpoints either in HF format or raw for continued pre-training (e.g. Composer format). #### Raw Checkpoints All raw training checkpoints are available in the [jhu-clsp/ettin-checkpoints](https://huggingface.co/datasets/jhu-clsp/ettin-checkpoints) dataset. #### HuggingFace Format Checkpoints Each model repository contains multiple tagged versions representing different training stages: - **`step{number}`** - Pretraining phase checkpoints (e.g., `step599525`, `step596528`) - **`ext{number}`** - Extension/mid-training phase checkpoints (e.g., `ext1000`, `ext2000`) - **`decay{number}`** - Decay phase checkpoints (e.g., `decay100`, `decay500`) ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Load a specific pretraining checkpoint model = AutoModelForCausalLM.from_pretrained( "jhu-clsp/ettin-decoder-400m", revision="step590532" # Specific checkpoint tag ) # Load an extension phase checkpoint model = AutoModelForCausalLM.from_pretrained( "jhu-clsp/ettin-decoder-400m", revision="ext1000" ) # Load a decay phase checkpoint model = AutoModelForCausalLM.from_pretrained( "jhu-clsp/ettin-decoder-400m", revision="decay100" ) ``` This checkpoint availability enables detailed analysis of training dynamics, loss curves, and capability emergence across the complete 2T token training process. ## Usage Examples ### Encoder: Masked Language Modeling
Click to expand encoder usage examples ```python from transformers import AutoTokenizer, AutoModelForMaskedLM import torch # Load MLM model tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-150m") model = AutoModelForMaskedLM.from_pretrained("jhu-clsp/ettin-encoder-150m") def predict_masked_token(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # Get predictions for [MASK] tokens mask_indices = torch.where(inputs["input_ids"] == tokenizer.mask_token_id) predictions = outputs.logits[mask_indices] # Get top 5 predictions top_tokens = torch.topk(predictions, 5, dim=-1) return [tokenizer.decode(token) for token in top_tokens.indices[0]] # Example masked_text = "The capital of France is [MASK]." predictions = predict_masked_token(masked_text) print(f"Predictions: {predictions}") ```
### Decoder: Text Generation
Click to expand decoder text generation ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-150m") model = AutoModelForCausalLM.from_pretrained("jhu-clsp/ettin-decoder-150m") # Set pad token if needed if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token def generate_text(prompt, max_length=100, temperature=0.7): inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_length=max_length, temperature=temperature, do_sample=True, pad_token_id=tokenizer.eos_token_id, num_return_sequences=1 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example usage prompt = "The future of artificial intelligence is" generated = generate_text(prompt) print(generated) ```
## πŸ”¬ Research Applications ### What Makes Ettin Unique Ettin provides the first **controlled comparison** of encoder vs. decoder architectures: - **Identical Training Data**: Same 2T token mixture across all models - **Matched Architectures**: Only attention patterns and objectives differ - **Open Everything**: Training data, model weights, and batch-level training order - **Multiple Scales**: Fair comparison from 17M to 1B parameters - **250+ Checkpoints**: Complete training trajectory analysis ### Key Research Findings 1. **Architecture Specialization Persists**: - Encoders excel at classification/retrieval even vs. larger decoders - Decoders excel at generation even vs. larger encoders - A 400M encoder beats a 1B decoder on MNLI (89.2 vs 88.2) 2. **Cross-Training Limitations**: - Converting decoderβ†’encoder or encoderβ†’decoder underperforms - 50B tokens of continued training insufficient to close gaps - Native training objective remains superior 3. **Scaling Insights**: - Performance gaps between architectures widen with size - Decoder-from-encoder adaptation scales particularly poorly ### Use Cases for Researchers - **Architecture Studies**: Compare encoder vs decoder capabilities fairly - **Training Dynamics**: Analyze 250+ checkpoints with batch-level data ordering - **Scaling Laws**: Study how architectural advantages change with scale - **Transfer Learning**: Investigate cross-objective training effectiveness - **Replication Studies**: First open replication of ModernBERT training recipe ### Reproducibility All training artifacts are publicly available: - Training data with exact batch ordering - Model checkpoints every 8.5B tokens - Complete hyperparameter configurations - Training code and evaluation scripts ## Training Details **Data:** High-quality mixture including DCLM, Dolma v1.7, scientific papers, code, and curated sources totaling 2T+ tokens **Architecture:** Transformer with RoPE, GLU activations, and prenorm layers **Training Phases:** - **Pre-training**: 1.7T tokens with diverse data mixture - **Mid-training**: 250B tokens with higher-quality filtered data and context extension to 8K - **Decay phase**: 100B tokens with premium data sources **Key Features:** - Context length: Up to 8K tokens - Vocabulary: 50,368 tokens (ModernBERT tokenizer) - Deep but efficient architectures following MobileLLM principles ## Model Architecture | Parameter | 17M | 32M | 68M | 150M | 400M | 1B | |:----------|:----|:----|:----|:-----|:-----|:---| | Layers | 7 | 10 | 19 | 22 | 28 | 28 | | Hidden Size | 256 | 384 | 512 | 768 | 1024 | 1792 | | Intermediate Size | 384 | 576 | 768 | 1152 | 2624 | 3840 | | Attention Heads | 4 | 6 | 8 | 12 | 16 | 28 | ## Citation If you use Ettin models in your research, please cite our work: ```bibtex @misc{weller2025seqvsseq, title={Seq vs Seq: An Open Suite of Paired Encoders and Decoders}, author={Orion Weller and Kathryn Ricci and Marc Marone and Antoine Chaffin and Dawn Lawrie and Benjamin Van Durme}, year={2025}, note={Paper coming soon}, url={https://github.com/jhu-clsp/ettin-encoder-vs-decoder}, } ```