Update README.md
Browse files
README.md
CHANGED
|
@@ -201,7 +201,7 @@ embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
| 201 |
</p>
|
| 202 |
</details>
|
| 203 |
|
| 204 |
-
1. The easiest way to
|
| 205 |
2. Alternatively, you can use `jina-embeddings-v3` directly via transformers package.
|
| 206 |
|
| 207 |
```python
|
|
@@ -220,9 +220,9 @@ texts = [
|
|
| 220 |
'Folge dem weißen Kaninchen.' # German
|
| 221 |
]
|
| 222 |
|
| 223 |
-
# When calling the `encode` function, you can choose a task_type based on the use case:
|
| 224 |
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
|
| 225 |
-
# Alternatively, you can choose not to pass a task_type
|
| 226 |
embeddings = model.encode(texts, task_type='text-matching')
|
| 227 |
|
| 228 |
# Compute similarities
|
|
@@ -230,7 +230,7 @@ print(embeddings[0] @ embeddings[1].T)
|
|
| 230 |
```
|
| 231 |
|
| 232 |
By default, the model supports a maximum sequence length of 8192 tokens.
|
| 233 |
-
However, if you want to truncate your input texts to a shorter length, you can pass the `max_length` parameter to the encode function:
|
| 234 |
```python
|
| 235 |
embeddings = model.encode(
|
| 236 |
['Very long ... document'],
|
|
@@ -238,8 +238,8 @@ embeddings = model.encode(
|
|
| 238 |
)
|
| 239 |
```
|
| 240 |
|
| 241 |
-
In case you want to use Matryoshka embeddings and switch to a different
|
| 242 |
-
you can adjust
|
| 243 |
```python
|
| 244 |
embeddings = model.encode(
|
| 245 |
['Sample text'],
|
|
|
|
| 201 |
</p>
|
| 202 |
</details>
|
| 203 |
|
| 204 |
+
1. The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embeddings API](https://jina.ai/embeddings/).
|
| 205 |
2. Alternatively, you can use `jina-embeddings-v3` directly via transformers package.
|
| 206 |
|
| 207 |
```python
|
|
|
|
| 220 |
'Folge dem weißen Kaninchen.' # German
|
| 221 |
]
|
| 222 |
|
| 223 |
+
# When calling the `encode` function, you can choose a `task_type` based on the use case:
|
| 224 |
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
|
| 225 |
+
# Alternatively, you can choose not to pass a `task_type`, and no specific LoRA adapter will be used.
|
| 226 |
embeddings = model.encode(texts, task_type='text-matching')
|
| 227 |
|
| 228 |
# Compute similarities
|
|
|
|
| 230 |
```
|
| 231 |
|
| 232 |
By default, the model supports a maximum sequence length of 8192 tokens.
|
| 233 |
+
However, if you want to truncate your input texts to a shorter length, you can pass the `max_length` parameter to the `encode` function:
|
| 234 |
```python
|
| 235 |
embeddings = model.encode(
|
| 236 |
['Very long ... document'],
|
|
|
|
| 238 |
)
|
| 239 |
```
|
| 240 |
|
| 241 |
+
In case you want to use **Matryoshka embeddings** and switch to a different dimension,
|
| 242 |
+
you can adjust it by passing the `truncate_dim` parameter to the `encode` function:
|
| 243 |
```python
|
| 244 |
embeddings = model.encode(
|
| 245 |
['Sample text'],
|