File size: 3,661 Bytes
a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 85842c9 a877d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-nc-4.0
base_model:
- jinaai/jina-embeddings-v4
base_model_relation: quantized
---
# jina-embeddings-v4-gguf
A collection of GGUF and quantizations for [`jina-embeddings-v4`](https://huggingface.co/jinaai/jina-embeddings-v4).
## Overview
`jina-embeddings-v4` is a cutting-edge universal embedding model [for multimodal multilingual retrieval](https://jina.ai/news/jina-embeddings-v4-universal-embeddings-for-multimodal-multilingual-retrieval). It's based on `qwen2.5-vl-3b-instruct` with three LoRA adapters: `retrieval` (optimized for retrieval tasks), `text-matching` (optimized for sentence similarity tasks), and `code` (optimized for code retrieval tasks). It is also heavily trained for visual document retrieval and late-interaction style multi-vector output.
## Text-Only Task-Specific Models
Here, we removed the visual components of qwen2.5-vl and merged all LoRA adapters back into the base language model. This results in three task-specific v4 models with 3.09B parameters, downsized from the original jina-embeddings-v4 3.75B parameters:
| HuggingFace Repo | Task |
|---|---|
| [`jinaai/jina-embeddings-v4-text-retrieval-GGUF`](https://huggingface.co/jinaai/jina-embeddings-v4-text-retrieval-GGUF) | Text retrieval |
| [`jinaai/jina-embeddings-v4-text-code-GGUF`](https://huggingface.co/jinaai/jina-embeddings-v4-text-code-GGUF) | Code retrieval |
| [`jinaai/jina-embeddings-v4-text-matching-GGUF`](https://huggingface.co/jinaai/jina-embeddings-v4-text-matching-GGUF) | Sentence similarity |
All models above provide F16, Q8_0, Q6_K, Q5_K_M, Q4_K_M, Q3_K_M quantizations. More quantizations such as Unsloth-like dynamic quantizations are on the way.
### Limitations
- They can not handle image input.
- They can not output multi-vector embeddings.
- When using retrieval and code models, you must add `Query: ` or `Passage: ` in front of the input. This ensure the query and retrieval targets are correctly embedded into the correct space.
## Multimodal Task-Specific Models
TBA
## Get Embeddings
First [install llama.cpp](https://github.com/ggml-org/llama.cpp/blob/master/docs/install.md).
Run `llama-server` to host the embedding model as OpenAI API compatible HTTP server. As an example for using `text-matching` with `F16`, you can do:
```bash
llama-server -hf jinaai/jina-embeddings-v4-text-matching-GGUF:F16 --embedding --pooling mean -ub 8192
```
Remarks:
- `--pooling mean` is required as v4 is mean-pooling embeddings.
- setting `--pooling none` is *not* as same as the multi-vector embeddings of v4. The original v4 has a trained MLP on top of the last hidden states to output multi-vector embeddings, each has 128-dim. In GGUF, this MLP was chopped off.
Client:
```bash
curl -X POST "http://127.0.0.1:8080/v1/embeddings" \
-H "Content-Type: application/json" \
-d '{
"input": [
"A beautiful sunset over the beach",
"Un beau coucher de soleil sur la plage",
"海滩上美丽的日落",
"浜辺に沈む美しい夕日"
]
}'
```
Note: When using `retrieval` and `code` models, add `Query: ` or `Passage:` in front of your input, like this:
```bash
curl -X POST "http://127.0.0.1:8080/v1/embeddings" \
-H "Content-Type: application/json" \
-d '{
"input": [
"Query: A beautiful sunset over the beach",
"Query: Un beau coucher de soleil sur la plage",
"Query: 海滩上美丽的日落",
"Query: 浜辺に沈む美しい夕日"
]
}'
```
You can also use `llama-embedding` for one-shot embedding:
```bash
llama-embedding -hf jinaai/jina-embeddings-v4-text-matching-GGUF:F16 --pooling mean -p "jina is awesome" 2>/dev/null
```
|